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Abstract

This article mainly introduces the framework of the modelling theory of dynamical system deep learning 
(DSDL). On the basis of attractor theory, we construct a series of DSDL models by establishing the nonlinear 
extension relationships between delay and non-delay attractors, between non-delay attractor and differential 
attractor, and time reversal mapping as well. These DSDL models mainly contain the conventional nonlinear 
prediction models, time-lag models, differential attractor mapping models (the conventional differential 
attractor mapping models and time-lag differential attractor mapping models), and time reversal models (the 
conventional time reversal models and time-lag time reversal models). In addition, we discuss key variables 
and differences among dynamical, statistical, machine learning (or artificial intelligence) and DSDL models.

Introduction

Since Lorenz (1963) discovered the phenomenon 
of chaos, how to predict nonlinear chaotic dynamical 
systems has become an important issue due to their 
extreme sensitivity to initial values. Usually, when 
the control equations of a nonlinear dynamical 
system are known, numerical solution is the primary 
choice for solving this problem. However, when the 
control equations of a nonlinear dynamical system 
are unknown, other methods need to be used. In the 
era of big data, machine learning (ML, or artificial 
intelligence) has become an important rather than the 
only option to solve the problem. Due to the inherent 
limitations of ML methods, utilizing the inherent 
property of attractors in nonlinear chaotic dynamical 
systems (Li, 1997; Li and Chou, 1997, 1998, 2003) 
allows us to attempt to establish prediction models 
by combining the delay embedding theorem of 

attractors with the observed data of the system. 
For a compact and finite-dimensional manifold, 

Takens (1981) gave the delay embedding theorem 
in state space reconstruction for obtaining complete 
information about the states of dynamical system in 
the observed time-series through the delay mapping. 
Robinson (2005) extended the Taken’s embedding 
theorem to infinite-dimensional partial differential 
equations (PDEs). Yap et al. (2014) and Eftekhari et 
al. (2018) further extended the Taken’s embedding 
theorem to the case in noisy conditions. 

Komalapriya et al. (2008, 2010) presented the 
inverse delay embedding theorem. Ma et al. (2014, 
2018) used the inverse delay embedding theorem 
to make prediction for short-term high-dimensional 
time series. This article attempts to establish the 
modeling theory of DSDL and various kinds of 
DSDL models using the inverse delay embedding 
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theorem based on the attractor theory.

Basic Notation

Let i, j, k, m, and n be integers, j ≤ m, j ≤ n, and 
let the row vector be

	 Xi( j:m) = (xij, xi(j+1), ... , xim), 	 (1.1)

	 Ai,k( j:m) = (ai,kj, ai,k( j+1), ... , ai,km), 	 (1.2)
The column vectors are 

	 X(j:m)i = (xji, x( j+1)i, ... , xmi)T, 	 (1.3)

	 Ai,( j:m)k = (ai, jk,  ai,(j+1)k, ... , ai,mk)T, 	 (1.4)

Where the upper subscript T represents transposition. 
The forward evolution matrix (the evolution matrix 
for short) is denoted as

 

Xm×( j:n) = X(1:m)×( j:n) =

= (X1( j:n), X2(j:n), ... , Xm(j:n))T

= (X(1:m)j, X(1:m)(j+1), ... , X(1:m)n).

xmj

x2j

x1j

…

xmn

x2n

x1n

…
xm( j+1)

x2(j+1)

x1(j+1)

… …

…

…
…

	(1.5)

When j = 1, the evolution matrix is denoted as

	

Xm×n = X(1:m)×(1:n) = 

= (X1(1:n), X2(1:n), ... , Xm(1:n))T

= (X(1:m)1, X(1:m)2, ... , X(1:m)n).

xm1

x21

x11

…

xmn

x2n

x1n

…

xm2

x22

x12

… …

…

…
…

	(1.6)

The forward univariate delay matrix (the 
univariate delay matrix for short) is denoted as

 

X D
i,( j:m)×( j:n) = 

= (Xi( j:n), Xi( j+1:n+1), ... , Xi(m:m+n–j))T

= (X T
i( j:m), X

T
i( j+1:m+1), ... , X

T
i(n:m+n–j))

xim

xi( j+1)

xij

xi(m+n–j)

xi(n+1)

xin

xi(m+1)

xi( j+2)

xi( j+1)

… …… …

…

…
…

	 (1.7)

When j = 1, the univariate delay matrix is denoted as

	

X D
i,m×n = X D

i,(1:m)×(1:n) = 

= (Xi(1:n), Xi(2:n+1), ... , Xi(m:m+n–1))T

= (X T
i(1:m), X

T
i(2:m+1), ... , X

T
i(n:m+n–1)).

xim

xi2

xi1

…

xi(m+n–1)

xi(n+1)

xin

…

xi(m+1)

xi3

xi2

… …

…

…
…

	

		  (1.8)
The coefficient matrix is denoted as

Ai,m×n = Ai,(1:m)×(1:m) =

= (Ai,1(1:m), Ai,2(1:m), ... , Ai,m(1:m))T

= (Ai,(1:m)1, Ai,(1:m)2, ... , Ai,(1:m)m).

ai,m1

ai,21

ai,11

…

ai,mm

ai,2m

ai,1m

…
xi,m2

ai,22

ai,12

… …
…

…
…

	 (1.9)

The general coefficient matrix is denoted as

	

Ai,m×(j:n) = Ai,(1:m)×(j:n) = 

= (Ai,1(j:n), Ai,2(j:n), ... , Ai,m(j:n))T

= (Ai,(1:m)j, Ai,(1:m)(j+1), ... , Ai,(1:m)n).

ai,mj

ai,2j

ai,1j

ai,mn

ai,2n

ai,1n

xi,m(j+1)

ai,2(j+1)

ai,1(j+1)

… …… …

…

…
…

	

		  (1.10)

Dynamical Evolution Relationship 
Between Non-delay and Delay Attractors of 
Dynamical Systems and Corresponding 
Model Construction

►► Mapping relationship between non-delay and 
delay attractors

Let the non-delay attractor evolution matrix of a 
m-dimensional dynamical system, i.e., the evolution 
time series matrix, be

	 X(t) =
xm(t1)

x2(t1)
x1(t1)

xm(tn)

x2(tn)
x1(tn)

xm(t2)

x2(t2)
x1(t2)

… …… …

…

…
…

, 	 (2.1)

If the time series are observation data, the evolution 
matrix of the above system is simplified

	 Xm×n=
xm1

x21

x11

…

xmn

x2n

x1n

…

xm2

x22

x12

… …

…

…
…

. 	 (2.2)

Let the delay attractor evolution matrix of a single 
variable Xi be

	 X D
i,m×(1:n) =

xim

xi2

xi1

…

xi(m+n+1)

xi(n+1)

xin

…

xi(m+1)

xi2

xi2

… …

…

…
…

. 	 (2.3)

According to the Takens’ Theorem (1981) and its 
extensions by Robinson (2005), Yap et al. (2014), 
and Eftekhari et al. (2018), we can establish the 
dynamic evolution relationship between non-delay 
attractor and delay attractor below 
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	 ΦN:Xm×n→X D
i,m×(1:n), 	 (2.4)

where ΦN is the nonlinear mapping, i.e.

xm1

x21

x11

…

xmn

x2n

x1n

…

xm2

x22

x12

… …

…

…
…

xim

xi2

xi1

…

xi(m+n–1)

xi(n+1)

xin

xi(m+1)

…xi3

xi2

… …

…

…
…

xim

xi2

xi1

…

xi(m+n–1)

xi(n+1)

xin

xi(m+1)

…xi3

xi2

… …

…

…
…

fm(xm1)

f2(x21)
f1(x11)

…

fm(xmn)

f2(x2n)
f1(x1n)

fm(xm2)

…f2(x22)
f1(x12)

… …

…

…
…

ΦN

,

,

orxm1

x21

x11

…

xmn

x2n

x1n

…

xm2

x22

x12

… …

…

…
…

xim

xi2

xi1

…

xi(m+n–1)

xi(n+1)

xin

xi(m+1)

…xi3

xi2

… …

…

…
…

xim

xi2

xi1

…

xi(m+n–1)

xi(n+1)

xin

xi(m+1)

…xi3

xi2

… …

…

…
…

fm(xm1)

f2(x21)
f1(x11)

…

fm(xmn)

f2(x2n)
f1(x1n)

fm(xm2)

…f2(x22)
f1(x12)

… …

…

…
…

ΦN

,

,

		  (2.5)
where fi (i = 1, 2, ..., m) are the nonlinear functions.

►► Linear prediction model

Firstly, we consider the simplest linear case to 
provide reference for establishing nonlinear models 
in practice. From Eq. (2.5), one has

	 Ai,m×m:Xm×m=X D
i,m×m, 	 (2.6)

where i = 1, 2, ..., m, 

	
Ai,m×m = 

ai,m1

ai,21

ai,11

…
ai,mm

ai,2m

ai,1m

…

ai,m2

ai,22

ai,12

… …

…

…
…

= (Ai,1(1:m), Ai,2(1:m), ... , Ai,m(1:m))T,

	 (2.7)

	
Xm×m = (X1(1:m), X2(1:m), ... , Xm(1:m))T

= (X(1:m)1, X(1:m)2, ... , X(1:m)m),
	 (2.8)

	
X D

i,m×m = (Xi(1:m), Xi(2:m+1), ... , Xi(m:2m–1))T

= (X T
i,(1:m), X

T
i,(2:m+1), ... , X

T
i,(m:2m–1)).

	 (2.9)

A linear prediction model can be constructed using 
Eq. (2.6). Let n > m, 

	 Xm×n = (Xm×m X P
m×(m+1:n)), 	 (2.10)

	 X D
i,m×n = (X D

i,m×m X i,m×(m+1:n)),
DP 	 (2.11)

where

	 Xm×m = 
xm1

x11…

xmm

x1m…

…

…
… , 	 (2.12)

	 X P
m×(m+1:n) =

xm(m+1)

x1(m+1)

xmn

x1n

,… …

…

…
… 	 (2.13)

	 X D
i,m×m = 

xim

xi1

xi(2m–1)

xim

,… …

…

…
… 	 (2.14)

	 DPX i,(m+1:2m)×(m+1:n) = 
xi(2m)

xi(m+1)

xi(n+m–1)

xin… …

…

…
… . 	(2.15)

Therefore, the above evolutionary relationship is 
represented as follows:

	 Ai,m×mXm×m = X D
i,m×m, 	 (2.16)

	 DPAi,m×m X P
m×(m+1:n) = X i,(m+1:2m)×(m+1:n). 	 (2.17)

Eq. (2.16) yields the coefficient matrix DPAi,m×m X P
m×(m+1:n) = X i,(m+1:2m)×(m+1:n)..  

Since DPAi,m×m X P
m×(m+1:n) = X i,(m+1:2m)×(m+1:n). contains the variables to be 

predicted, it is called as the sample prediction matrix 
of . For clarity, let

	 DPX D
i,(m+1:2m)×(m+1:n) = X i,(m+1:2m)×(m+1:n). 	 (2.18)

i.e., Eq. (2.17) can be expressed by

	 Ai,m×m X (m+1:2m)×(m+1:n) = X D
i,(m+1:2m)×(m+1:n). 

DP 	

It can be easily written by the commonly used form 
of the prediction model as follows:

	 DPX D
i,(m+1:2m)×(m+1:n) = Ai,m×mX (m+1:2m)×(m+1:n). 	 (2.19)

►► Nonlinear prediction models

In fact, ΦN is a nonlinear mapping, and in order 
to establish the dynamic evolution relationship 
of Eq. (2.5), some new variables need to be 
introduced. In practice, in order to obtain an 
explicit relationship, fi can be set as elementary 
functions, usually power functions, sine and cosine 
functions or their combinations. We can construct 
a hierarchical structure based on the order of the 
monomial (denoted as L), where the sine or cosine 
function can be treated as an alpha-variable. For 
example, for the first layer L = 1, it introduces all 
first-order monomials (with a number of C1

m), and 
the set composed of these first-order monomials is 
denoted as L1; For the second layer L = 2, on the 
basis of the first layer, all second-order monomials 
(with a number of C2

m+1) are introduced, and the 
set composed of these second-order monomials is 
denoted as L2; For the -th layer, on the basis of the 
layers L1 ø L2 ø LL–1, all L-order monomials (with 
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a number of CL
m+L–1) are introduced, and the set 

composed of these L-order monomials is referred to 
as LL. If the sum of the numbers of all monomials in 
the nonlinear part of fi is l, and its maximum number 
is l = ∑L

i=1C
i
m+i–1, then l variables xi(i = m + 1, ..., m 

+ l) are introduced to correspond to these terms, and 
the following relationship can be established

	 Ai,M×MXM×M = X D
i,M×M, 	 (2.20)

where M = m + l, i = 1, ..., M, 

	 Ai,M×M = (Ai,1(1:M), Ai,2(1:M), …, Ai,M(1:M))T, 	 (2.21)

	
XM×M = (X1(1:M), X2(1:M), …, XM(1:M))T

= (X(1:M)1, X(1:M)2, …, X(1:M)M),
	 (2.22)

	
X D

i,M×M = (Xi(1:M), Xi(2:M+1), …, Xi(M:2M–1))T

= (X T
i(1:M), X

T
i(2:M+1), …, X T

i(M:2M–1)).
	(2.23)

Then a prediction model can be constructed using 
Eq. (2.20). Let N > M, 

	 XM×N = (XM×M X P
M×(M+1:N)), 	 (2.24)

	 X D
i,M×N = (X D

i,M×M X i,M×(M+1:N)),DP 	 (2.25)

where

	 XM×M = 
xM1

x11

xMM

x1M…… …

…

…
, 	 (2.26)

	 X P
M×(M+1:N) = 

xM(M+1)

x1(M+1)

xMN

x1N

,…… …

…

…
	 (2.27)

	 X D
i,M×M = 

xiM

xi1

xi(2M–1)

xiM

,

…… …

…

…
	 (2.28)

  DPX i,(M+1:2M)×(M+1:N) = 
xi(2M)

xi(M+1)

xi(N+2M–1)

xiN…… …

…

…

. 	 (2.29)

Therefore, the above evolutionary relationship is 
expressed as follows: 

	 Ai,M×MXM×M = Xi,M×M, 	 (2.30)

	 DPAi,M×MX P
(M+1:2M)×(M+1:N) = X i,(M+1:2M)×(M+1:N). 	 (2.31)

Here DPAi,M×MX P
(M+1:2M)×(M+1:N) = X i,(M+1:2M)×(M+1:N). is the prediction matrix for the 

sample xi. For simplicity and clarity, let

	 DPX D
i,(M+1:2M)×(M+1:N) = X i,(M+1:2M)×(M+1:N). 	 (2.32)

Then Eq. (2.31) is expressed as

	 Ai,M×MX P
M×(M+1:N) = X D

i,(M+1:2M)×(M+1:N). 	 (2.33)

The first row of Eq. (2.20) cannot be used for 
prediction, so a prediction model is established 
from the j-th (j = 2, ..., M) row, that is, the following 
mapping is constructed:

  ΦN:XM×N → X D
i,(j:M+j–1)×(1:N), (j = 2, …, M). 	 (2.34)

For j = 2,

	

Ai,2(1:M)XM×M = Xi(2:M+1)→Ai,2(1:M)X(1:M)(M+1) = xi(M+2),

→Ai,2(1:M)X(1:M)(M+2) = xi(M+3)

→Ai,2(1:M)X(1:M)(M+k) = xi(M+k+1), (k = 2, 3, …).

	

		  (2.35)
This achieves the prediction of the variable xi(i = 1,  
2, ..., m). In fact, we can establish the following 
delay prediction model (referred to as the D1 
model, which means making predictions one step in 
advance): 

	

Ai,2(1:M)XM×M = Xi(2:M+1),

Xi(M+k+1) = Ai,2(1:M)Xi(M+k), (k = 2, 3, …).
Xi(M+2) = Ai,2(1:M)Xi(M+1), 	(2.36)

where i = 1, 2, ..., M. Although the M equations 
are established here, in fact, only the original m 
variables of the system need to be solved, and other 
nonlinear terms can be obtained immediately. We 
can also write Eq. (2.36) in a universal matrix form 
below: 

	

A(1:M),2(1:M)XM×M = X(1:M)×(2:M+1),

X(1:M)(M+k+1) = A(1:M),2(1:M) X(1:M)(M+k), (k = 2, 3, …).
X(1:M)(M+2) = A(1:M),2(1:M) X(1:M)(M+1), 	

		  (2.37)
where

	

A(1:M),2(1:M) =

X(1:M) × (2:M+1) = 

XM×M =

aM,21

a2,21

a1,21

aM,2M

a2,2M

a1,2M

aM,22

a2,22

a1,22

xM1

x21

x11

xM2

x22

x12

xMM

x2M

x1M

xM2

x12

xM3

x13

xM(M+1)

x1(M+1)
x22 x23 x2(M+1)

,

,

.

…
…

…

…………

…
…

…

…………

…
…

…

…………

	

When j > 2, the corresponding delay prediction 
models can also be established, e.g., for j = 3



海洋碳中和前沿进展（2024）
Advances in Ocean Carbon Neutrality (2024)380

	
Ai,3(1:M)XM×M = X T

i(2:M+2) → Ai,3(1:M)X(1:M)(M+1) = xi(M+3)

→ Ai,3(1:M) X(1:M)(M+2) = xi(M+4)

→ Ai,3(1:M)X(1:M)(M+k) = xi(M+k+2), (k = 2, 3, …).
	

		  (2.38)
For the general j (> 2), we have

	
Ai, j(1:M)XM×M = X T

i( j:M+j–1) → Ai, j(1:M)X(1:M)(M+1) = xi(M+j)

→ Ai, j(1:M)X(1:M)(M+2) = xi(M+j+1)

→ Ai, j(1:M)X(1:M)(M+k+j–2) = xi(M+k+j–1), (k = 2, 3, …).
	

		  (2.39)
Therefore, when , the following delay prediction 

model (referred to as the  model), which can make a 
prediction  steps ahead, can be established below:

 

Ai, j(1:M)XM×M = Xi( j:M+j–1),

Xi(M+j+k–1) = Ai, j(1:M)Xi(M+k), (k = 2, 3, …).
Xi(M+j) = Ai, j(1:M)Xi(M+1), 	 (2.40)

where i = 1, 2, ..., M. We can also write Eq. (2.40) in 
a general matrix form as follows:

	

A(1:M), j(1:M)XM×M = X(1:M)×( j:M+j–1),

X(1:M)(M+j+k+1) = A(1:M), j(1:M)X(1:M)(M+k), (k = 2, 3, …).
X (1:M)(M+j) = A(1:M), j(1:M)X(1:M)(M+1), 	

		  (2.41)
where

	

A(1:M), j(1:M) =
aM, j1

a2, j1

a1, j1

aM, jM

a2, jM

a1, jM

aM, j2

a2, j2

a1, j2

A(1:M), j( j:M+j–1) =
xMj

x1j

xM(M+ j–1)xM(j+1)

x1(j+1) x1(M+ j–1)

x2j x2(j+1) x2(M+ j–1)

… …… …

…

…
…

… …… …

…

…
…

,

.

	

As can be seen from the above, when j = 2, the 
prediction model D1 (i.e. Eq. (2.36) or Eq. (2.37)) 
uses the least number of observations. But when  
j > 2, the prediction model DK (i.e. Eq. (2.40) or Eq. 
(2.41)) can predict K = j – 1 steps in advance.

For the D1 model (i.e. Eq. (2.36)), the following 
predictor-corrector delay model (referred to as the 
PCD1 model) can be established for predicting one 
step in advance:

 

Ai,2(1:M)XM×M = Xi(2:M+1),
X i(M+2) = Ai,2(1:M)Xi(M+1),

X i(M+k+1) = Ai,2(1:M)Xi(M+k),

Xi(M+2) =     Ai,2(1:M)(Xi(M+1)+X i(M+2)),
1
2

Xi(M+k+1)=     Ai,2(1:M)(Xi(M+k) + X i(M+k+1)),
1
2

 (k = 2, 3, …).

	 (2.42)

where i = 1, 2, ..., M. If it is written in general matrix 
form, Eq. (2.42) becomes:

	

A(1:M ),2(1:M ) XM×M = X(1:M )×(2:M+1),
X (1:M )(M 2) = A(1:M ),2(1:M)X(1:M )(M+1),

X (1:M )(M+k+1) = A(1:M ),2(1:M)X(1:M)(M+k),

X(1:M )(M 2) =     A(1:M ),2(1:M)(X(1:M )(M+1) + X (1:M )(M+2)),
1
2

X(1:M )(M+k+1) =     A(1:M ),2(1:M )(X(1:M)(M+k) + X (1:M)(M+k+1)),
1
2
 (k = 2, 3, …).

		  (2.43)
Following the above, a predictor-corrector delay 
model PCDK, which can predict K = j – 1(j > 2) 
steps in advance, can be established.

►► Key variables

In the course of modeling, although there are 
many initial variables, in fact, many variables are 
irrelevant variables that need to be eliminated, and 
only the variables that are crucial to the system’s 
evolutionary behavior are retained, which are 
called the key variables. How to find these key 
variables and remove irrelevant variables is the 
key to modeling and interpretability of the model, 
which requires the use of big data and the design of 
suitable judgment indicators for removing irrelevant 
variables. Assuming there is a suitable criterion 
system I for removing irrelevant variables, there are 
two ways to find the set of key variables (Fig. 1). 
One way is to research and judge the key variables 
in each layer (Fig. 1a); Another approach is to 
involve the set of key variables obtained from the 
previous layer in the search and determination of 
key variables in the next layer (Fig. 1b). The latter 
method may save computational resources when 
there are numerous system variable parameters. As 
for which method is more effective, it needs to be 
judged specifically in practice. 

Time-lag Models

Essentially, the mapping (2.5) does not fully 
consider time-lag relationship, that is, does not 
fully utilize the previous information of the system, 
which may lead to a decrease in the accuracy of 
the model prediction. Therefore, it is necessary to 
extend the prediction model. Let J ≥ 0, we construct 
the following time-lag mapping between previous 
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information evolution matrix and univariate delay 
matrix:

	 ΦN:X([–J:1]m)×n → X
D
i,m×(1:(J+2)n). 	 (3.1)

That is to say, we need to consider the information 
from the previous 2 + j steps. As above, let fi still 
be elementary functions, so that Eq. (2.20) can be 
transformed into

	 Ai,M×([–J:1]M)X([–J:1]M)×(1:(J+2)M) = X D
i,M×(1:(J+2)M). 	 (3.2)

where the coefficient matrix

	 Ai,M×([–J:1]M) = (Ai,M×(1:M), Ai,M×(0:M–1), …, Ai,M×(–J:M–J–1)), 	

		  (3.3)
the previous information evolution matrix

X([–J:1]M)×(1:(J+2)M) = (XM×(1:(J+2)M), XM×(0:(J+2)M–1), …, 
                           XM×(–J:(J+2)M–J–1))

T

=
XM×(1:(J+2)M)
XM×(0:(J+2)M–1)

XM×(–J:(J+2)M–J–1)

… ,
	(3.4)

the univariate delay matrix

X D
i,M×(1:(J+2)M) = (Xi(1:(J+2)M), Xi(2:(J+2)M+1), …, Xi(M:(J+2)M+M–1)).

		  (3.5)
Similarly, the first row cannot be used for prediction. 
A corresponding prediction model can be established 
from the j-th (j = 2, ..., M) row. When j = 2, a 
time-lag prediction model (referred to as TLD1(j 
+ 2) model), which uses the information from the 
previous 2 + J steps to predict one step in advance, 
can be established as follows

 

Ai,2([–J:1]M)X([–J:1]M)×(1:(J+2)M) = Xi(2:(J+2)M+1),
Xi((J+2)M+2) = Ai,2([–J:1]M) X([–J:1]M)×((J+2)M+1),
Xi((J+2)M+k+1) = Ai,2([–J:1]M) X([–J:1]M)((J+2)M+k),  
                   (k = 2, 3, …).

	 (3.6)

where i = 1, 2, ..., M,

	
Ai, 2([–J:1]M) = (Ai,2(1:M), Ai,2(0:M–1), ... , Ai,2(–J:M–J–1)),

Xi, (2:(J+2)M+1) = (xi2, xi3, ... , xi(J+2)M+1).
	

If it is written in general matrix form, Eq. (3.6) 

Fig. 1  Two ways to implement a set of key variables. (a) Redefine the set of key variables for 
each layer. (b) The set of key variables from the previous layer is involved in determining the 
key variables for the next layer. In the figure, Li represents the set of i-th order monomials in 

the i-th layer, l represents the sum of all monomials in the corresponding layer, I is a determined 
indicator system for removing irrelevant variables, Ki is the set of key variables in the i-th 

layer, and ki is the number of corresponding key variable
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becomes:

A(1:M),2([–J:1]M) X([–J:1]M)×(1:(J+2)M) = X(1:M)×(2:(J+2)M+1),
X(1:M)((J+2)M+2) = A(1:M),2([–J:1]M)X([–J:1]M)×((J+2)M+1),

X(1:M)((J+2)M+k+1) = A(1:M),2([–J:1]M)X([–J:1]M)((J+2)M+k),  
                             (k = 2, 3, …).

	(3.7)

where

	A(1:M),2([–J:1]M) = 
AM,2(1:M)

A2,2(1:M)

A1,2(1:M)

AM,2(0:M–1)

A2,2(0:M–1)

A1,2(0:M–1)

aM,2(–J:M–J–1)

A2,2(–J:M–J–1)

A1,2(–J:M–J–1)

… … … …

…
…

…
,

		  (3.8)

X(1:M)×(2:(J+2)M+1) = 
xM2

x22

x12

xM3

x23

x13

xM((J+2)M+1)

x2((J+2)M+1)

x1((J+2)M+1)

… …… …

…
…

…
. 	 (3.9)

When j > 2, we establish a following time-lag 
delay prediction model (referred to as the TLDK(J 
+ 2) model) that utilizes the information from the 
previous 2 + J steps to predict K = j – 1 steps in 
advance:

Ai, j([–J:1]M)X([–J:1]M)×(1:(J+2)M) = Xi(j:(J+2)M+j–1),
Xi((J+2)M+j) = Ai, j([–J:1]M)X([–J:1]M)×((J+2)M+1),
X((–J:1)M)((J+2)M+j+k–1) = Ai, j([–J:1]M)X([–J:1]M)((J+2)M+k),  
                       (k = 2, 3, …).

	(3.10)

where i = 1, 2, ..., M,

	
Ai, j([–J:1]M) = (Ai, j(1:M), Ai, j(0:M–1), ... , Ai, j(–J:M–J–1)),

Xi, (j:(J+2)M+j–1) = (xij, xi(j+1), ... , xi((J+2)M+j–1).
	

If it is written in a general matrix form, Eq. (3.10) 
becomes:

	

A(1:M), j([–J:1]M)X([–J:1]M)×(1:(J+2)M) = X(1:M)×( j:(J+2)M+j–1),
X(1:M)((J+2)M+j) = A(1:M), j([–J:1]M)X([–J:1]M)((J+2)M+1),

X((–J:1)M)((J+2)M+j+k–1) = A(1:M), j([–J:1]M)X([–J:1]M)((J+2)M+k),
                         (k = 2, 3, …).

	

		  (3.11)
where

	 A(1:M), j([–J:1]M) = 
AM, j(1:M)

A2, j(1:M)

A1, j(1:M)

AM, j(0:M–1)

A2, j(0:M–1)

A1, j(0:M–1)

AM, j(–J:M–J–1)

A2, j(–J:M–J–1)

A1, j(–J:M–J–1)

,… … ……

…
…

…
	

		  (3.12)

	 X(1:M)×( j:(J+2)M+j–1) = 
xMj

x2j

x1j

xM(j+1)

x2(j+1)

x1(j+1)

xM((J+2)M+j–1)

x2((J+2)M+j–1)

x1((J+2)M+j–1)

.……… …

…
…

…
	

		  (3.13)
For the TLD1 model (i.e. Eq. (3.6)), the following 

predictor-corrector time-lag delay model (referred 

to as the PCTLD1(J + 2) model), which uses the 
information from the previous J + 2 steps to predict 
one step ahead, can be established below:

	

Ai,2([–J:1]M)X([–J:1]M)×(1:(J+2)M) = Xi(2:(J+2)M+1),
X i((J+2)M+2) = Ai,2([–J:1]M)X([–J:1]M)((J+2)M+1),

X i((J+2)M+k+1) = Ai,2([–J:1]M)X([–J:1]M)((J+2)M+k),

+ X i(1:M)((J+2)M+k+1)) (k = 2, 3, …).

Xi((J+2)M+2) =      Ai,2([–J:1]M)(X([–J:1]M)((J+2)M+1) + X i((J+2)M+2)),
1
2

Xi((J+2)M+k+1) =     Ai,2([–J:1]M)(X([–J:1]M)((J+2)M+k),
1
2

		  (3.14)
where i = 1, 2, ..., M. If it is written in a general 
matrix form, Eq. (3.14) becomes:

	

A(1:M),2([–J:1]M)X([–J:1]M)×(1:(J+2)M) = X(1:M)×(2:(J+2)M+1),
X (1:M)((J+2)M+2) = A(1:M),2([–J:1]M)X([–J:1]M)((J+2)M+1),

X (1:M)((J+2)M+k+1) = A(1:M),2([–J:1]M)X([–J:1]M)((J+2)M+k),

+ X (1:M)((J+2)M+k+1)) (k = 2, 3, …).

X(1:M)((J+2)M+2) =       A(1:M),2([–J:1]M)(X([–J:1]M)((J+2)M+1) 
1
2

X(1:M)((J+2)M+k+1) =       A(1:M),2([–J:1]M)(X([–J:1]M)((J+2)M+k),
1
2

+X (1:M)((J+2)M+2)), 	

		  (3.15)
Following the above, a predictor-corrector time-
lag delay model PCTLDK(J + 2), which uses the 
information from the previous J + 2 steps to predict 
K = j – 1(j > 2) steps ahead, can be established.

Differential Attractor Mapping Models

►► Conventional differential attractor mapping 
models

In fact, there is a sampling time interval in the 
observation data, however, the mapping (2.5) does 
not consider this issue. The description of system 
evolution may vary depending on the sampling 
time interval, therefore, the sampling time interval 
should be considered. Let h be the sampling interval, 
we construct the following differential attractor 
mapping:

	 ΦN:hXm×n → dX D
i,m×(1:n). 	 (4.1)

where

	 dX D
i,m×(1:n) = 

dxim

dxi2

dxi1

dxi(m+1)

dxi3

dxi2

dxi(m+n–1)

dxi(n+1)

dxin

……… …

…
…

…
, 	(4.2)
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where

	 dxij = xi(j+1) – xij. 	 (4.3)
As above, let fi still be elementary functions, so that 
a prediction model can be established for each row. 
For j = 1, we can establish a differential prediction 
model (referred to as the DD1 model) that predicts 
one step ahead of schedule as follows:

	

hAi,1(1:M)XM×M = dXi(1:M),

Xi(M+k+1) = Xi(M+k) + hAi,1(1:M)Xi(M+k), (k = 2, 3, …).
Xi(M+2) = Xi(M+1) + hAi,1(1:M)Xi(M+1), 	

		  (4.4)
where i = 1, 2, ..., M. We can also write Eq. (4.4) in 
a universal matrix form:

	

hA(1:M),1(1:M)XM×M = dX(1:M)×(1:M),

X(1:M)(M+k+1) = X(1:M)(M+k) + hA(1:M),1(1:M)X(1:M)(M+k), 
                           (k = 2, 3, …).

X(1:M)(M+2) = X(1:M)(M+1) + hA(1:M),1(1:M)X(1:M)(M+1), 	

		  (4.5)
where

	

A(1:M)×2(1:M) =

XM×M =

a1,11 a1,1Ma1,12

a2,11 a2,1Ma2,12

aM,11 aM,1MaM,12

dX(1:M)×(1:M) =

dx11 dx1Mdx12

dx22 dx2Mdx22

dxM2 dxMMdxM3

xM1

x21

x11

xM2

x22

x12

xMM

x2M

x1M

… ……

…

…
…

…

… ……

…

…
…

…

… ……

…

…
…

…

,

,

.

	

For the general j, we can establish the following 
differential delay prediction model (referred to as 
the DDj model) that predicts the j steps in advance:

hAi, j(1:M)XM×M = dXi(j:M+j–1),

Xi(M+j+k–1) = Xi(M+j+k–2) + hAi,j(1:M)Xi(M+k), (k = 2, 3, …).
Xi(M+j+1) = Xi(M+j) + hAi,j(1:M)Xi(M+1),

		  (4.6)
where i = 1, 2, ..., M. We can write Eq. (4.6) in the 
following universal form:

	

hA(1:M), j(1:M)XM×M = dX(1:M)×(j:M+j–1),

X(1:M)(M+j+k–1) = X(1:M)(M+j+k–2) + hA(1:M), j(1:M)X(1:M)(M+k), 
                          (k = 2, 3, …).

X(1:M)(M+j+1) = X(1:M)(M+j) + hA(1:M), j(1:M)X(1:M)(M+1),

		  (4.7)

where

	

dX(1:M)×( j:M+J–1) =

dx1j dx1(M+j–1)dx1(J+1)

dx2j dx2(M+j–1)dx2(J+1)

dxMj dxM(M +j+1)dxM( j+1)

… …… …

…

…
…

A(1:M)×2(1:M) =

a1, j1 a1, jMa1, j2

a2, j1 a2, jMa2, j2

aM, j1 aM, jMaM, j2

… ……

…

…
…

…

,

.

	

To improve accuracy, for the DD1 model (i.e. Eq. 
(4.4)), the following predictor-corrector differential 
delay prediction model (referred to as the PCDD1 
model) can be established to make predictions one 
step in advance:

	

hAi,1(1:M)XM×M = Xi(1:M),
Xi(M+2) = Xi(M+1) + hAi,1(1:M)Xi(M+1),

Xi(M+k+1) = Xi(M+k) + hAi,1(1:M)Xi(M+k),
Xi(M+2) = Xi(M+1) +       Ai,1(1:M)(Xi(M+1) + Xi(M+2)),

1
2

Xi(M+k+1) = Xi(M+k) +      Ai,1(1:M)(Xi(M+k) + Xi(M+k+1)),
h
2

(k = 2, 3, …).

	

		  (4.8)
where i = 1, 2, ..., M. If Eq. (4.8) is written in a more 
universal form, it would be as follows:

	

hA(1:M),1(1:M)XM×M = X(1:M)×(1:M),
X(1:M)(M+2) = X(1:M)(M+1) + hA(1:M),1(1:M)X(1:M)(M+1),

X(1:M)(M+k+1) = X(1:M)(M+k) + hA(1:M),1(1:M)X(1:M)(M+k),

X(1:M)(M+2) = X(1:M)(M+1)+      A(1:M),1(1:M)(X(1:M)(M+1) 
                  + X(1:M)(M+2)),

h

h

2

X(1:M)(M+k+1) = X(1:M)(M+k)+      A(1:M),1(1:M)(X(1:M)(M+k) 
                    + X(1:M)(M+k+1)),

2

(k = 2, 3, …).

	

		  (4.9)
Following the above, a predictor-corrector model 

PCDDj can be established to make predictions the j 
steps in advance.

►► Time-lag differential attractor mapping models

Let J ≥ 0, we construct the following time-lag 
delay mapping of differential attractor:

	 ΦN:hX([–J:1]m)×n → dX D
i,m×(1:(J+2)n). 	 (4.10)

As above, if f i are still elementary functions, then

  hAi,M×([–J:1]M)X([–J:1]M)×(1:(J+2)M) = dX D
i,M×(1:(J+2)M). 	 (4.11)

where
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	 Ai,M×([–J:1]M) = (Ai,M×(1:M), Ai,M×(0:M–1), …, Ai,M×(–J:M–J–1)), 	

		  (4.12)

 

X([–J:1]M)×(1:(J+2)M) = (XM×(1:(J+2)M), XM×(0:(J+2)M–1), 
                           …, XM×(–J:(J+2)M–J–1))

T

=
XM×(1:(J+2)M)
XM×(0:(J+2)M–1)

XM×(–J:(J+2)M–J–1)

,…

	 (4.13)

 

dX D
i,M×(1:(J+2)M) = (dXi(1:(J+2)M), dXi(2:(J+2)M+1), 

                        …, dXi(M:(J+2)M+M–1))
T

=

dXi(1:(J+2)M)
dXi(2:(J+2)M+1)

dXi(M:(J+2)M+M–1)

.
	 (4.14)

Each row can establish a predictive model. For j = 1, 
we establish the following time-lag differential delay 
prediction model (referred to as the TLDD1 model) 
that utilizes the information from the previous 2 + J 
steps to make predictions 1 step in advance:

	

hAi,1([–J:1]M) X([–J:1]M)×(1:(J+2)M) = dXi(1:(J+2)M),
Xi((J+2)M+2) = Xi((J+2)M+1) + hAi,1([–J:1]M)X([–J:1]M)((J+2)M),

Xi((J+2)M+k+1) = Xi((J+2)M+k)

+ hAi,1([–J:1]M) X([–J:1]M)((J+2)M+k–1), (k = 2, 3, …).

	

		  (4.15)
where i = 1, 2, ..., M. Eq. (4.15) can also be written 
in the following universal form:

	

hA(1:M),1([–J:1]M)X([–J:1]M)×(1:(J+2)M) = dX(1:M)×(1:(J+2)M),
X(1:M)((J+2)M+2)=X(1:M)((J+2)M+1)+hA(1:M),1([–J:1]M)X([–J:1]M)((J+2)M),

X(1:M)((J+2)M+k+1) = X(1:M)((J+2)M+k)

+ hA(1:M),1([–J:1]M)X([–J:1]M)((J+2)M+k–1), (k = 2, 3, …).

		  (4.16)
For the general j, a time-lag differential delay 

prediction model (referred to as the TLDDj model), 
which uses the information from the previous 2 + J  
steps to make predictions the j steps in advance, can 
be established as follows

hAi, j([–J:1]M)X([–J:1]M)×(1:(J+2)M) = Xi( j:(J+2)M+j–1),
Xi((J+2)M+j+1) = Xi((J+2)M+j) + hAi, j([–J:1]M)X([–J:1]M)((J+2)M),

Xi((J+2)M+j+k) = Xi(M+j+k–1)

+ hAi,1([–J:1]M)X([–J:1]M)((J+2)M+k–1), (k = 2, 3, …).

		  (4.17)
where i = 1, 2, ..., M. Eq. (4.17) can also be written 
in the following universal form:
	

hA(1:M), j([–J:1]M)X([–J:1]M)×(1:(J+2)M) = X(1:M)×( j:(J+2)M+j–1),
X(1:M)((J+2)M+j+1)=X(1:M)((J+2)M+j)+hA(1:M), j([–J:1]M)X([–J:1]M)((J+2)M),

X(1:M)((J+2)M+k+j) = X(1:M)(M+j+k–1)

+ hA(1:M),1([–J:1]M)X([–J:1]M)((J+2)M+k–1), (k = 2, 3, …).

		  (4.18)
In order to improve accuracy, for the TLDD1 

model (i.e. Eq. (4.12)), a predictor-corrector time-
lag differential delay model (referred to as the 
PCTLDD1 model), which uses the information 
from the previous 2 + J steps to predict one step in 
advance, can be established:

hAi,1([–J:1]M)X([–J:1]M)×(1:(J+2)M) = dXi(1:(J+2)M),
Xi((J+2)M+2) = Xi((J+2)M+1) + hAi,1([–J:1]M)X([–J:1]M)((J+2)M),

Xi((J+2)M+2) = Xi((J+2)M+1) +      Ai,1([–J:1]M)(X([–J:1]M)((J+2)M)

Xi((J+2)M+k+1) = Xi((J+2)M+k)+hAi,1([–J:1]M)X([–J:1]M)((J+2)M+k–1),
Xi((J+2)M+k+1) = Xi((J+2)M+k)

+ Xi((J+2)M+2)),

h
2

+     Ai,1([–J:1]M)(X([–J:1]M)((J+2)M+k) + Xi((J+2)M+k+1)),
h
2

 (k = 2, 3, …).
		  (4.19)
where i = 1, 2, ..., M. In addition, Eq. (4.19) can be 
written in the following universal form:

hA(1:M),1([–J:1]M)X([–J:1]M)×(1:(J+2)M) = dX(1:M)×(1:(J+2)M),
X(1:M)((J+2)M+2) = X(1:M)((J+2)M+1) 

+ hA(1:M),1([–J:1]M)X([–J:1]M)((J+2)M),

X(1:M)((J+2)M+k+1) = X(1:M)((J+2)M+k)

X(1:M)((J+2)M+k+1) = X(1:M)((J+2)M+k)

A(1:M),1([–J:1]M)(X([–J:1]M)((J+2)M) + X(1:M)((J+2)M+2)),h
2

+     A(1:M),1([–J:1]M)(X([–J:1]M)((J+2)M+k) + X(1:M)((J+2)M+k+1)),
h
2

(k = 2, 3, …).

+hA(1:M),1([–J:1]M) X([–J:1]M)((J+2)M+k–1),

X(1:M)((J+2)M+2) = X(1:M)((J+2)M+1) +

		  (4.20)
Similarly, following the previous approach, 

we can establish a predictor-corrector time-lag 
differential delay model PCTLDDj that utilizes the 
information from the previous 2 + J steps to make 
predictions j steps in advance.

Time Reversal Models

When we discuss whether we can infer the past 
changes of a dynamical system based on its existing 
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evolutionary data, we need to establish a backward 
mapping of the dynamical system over time. This 
type of model is termed as the time reversal model. 
This type of research is very interesting because 
it has the potential to provide a new method for 
reconstructing past changes of system, which is 
very useful for reconstructing paleoclimate data, etc. 
When establishing a time reversal model, we still 
need to establish a symbol system.

►► Basic notation

Let i, j, k, m and n be integers, j ≤ m, j ≤ n, and 
let the backward raw vector be:

	 Xi(m:j) = (xim, xi(m–1), …, xij), 	 (5.1)

	 Ai,k(m:j) = (ai,km, ai,k(m–1), …, ai,kj), 	 (5.2)

The backward column vector is:

	 X(m:j)i = (xmi, x(m–1)i, …, xji)
T, 	 (5.3)

	 Ai,(m:j)k = (ai,mk, ai,(m–1)k, …, ai, jk)
T, 	 (5.4)

The backward evolution matrix is denoted as:

	
Xm×(n:j) = X(1:m)×(n:j) =

= (X1(n:j), X2(n:j), …, Xm(n:j))T

= (X(1:m)n, X(1:m)(n–1), …, X(1:m)j).

xmn

x2n

x1n

xm(n+1)

x2(n+1)

x1(n+1)

xmj

x2j

x1j

……… …

…
…

… 	(5.5)

When j = 1, the backward evolution matrix is 
denoted as:

 
Xm×(n j)=X(1 m)×(n 1)=

=(X1(n 1),X2(n 1), ,Xm(n 1))T

=(X(1 m)n,X(1 m)(n-1), ,X(1 m)j)

xmn

x2n

x1n

xm(n-1)

x2(n-1)

x1(n-1)

xm1

x21

x11

	 (5.6)

The univariate backward extension matrix is 
denoted as:

	
= (Xi(n–1:j), Xi(n–1:j–1), …, Xi(n–m:j–m+1))T

= (X T
i(n–1:n–m), X

T
i(n–2:n–m–1), …, X T

i(j:j–m+1)).

xi(n–m)

xi(n–2)

xi(n–1)

xi(n–m–1)

xi(n–3)

xi(n–2)

xi( j–m+1)

xi( j–1)

xij

X i,m×(n–1:j) = X i,(1:m)×(n–1:j) =–D –D ……… …

…
…

…

		  (5.7)
When j = 0, the univariate backward extension 

matrix is denoted as:

= (Xi(n–1:0), Xi(n–2:–1), …, Xi(n–m:–m+1))T

= (X T
i(n–1:n–m), X

T
i(n–2:n–m+1), …, X T

i(0:–m+1)).

xi(n–m)

xi(n–2)

xi(n–1)

xi(n–m–1)

xi(n–3)

xi(n–2)

xi(–m+1)

xi(–1)

xi0

X i,m×(n–1:0) = X i,(1:m)×(n–1:0) =–D –D ……… …
…
…

…

		  (5.8)
The backward coefficient matrix is denoted as:

	
= (Ai,1×(m:1), Ai,2×(m:1), …, Ai,m×(m:1))T

= (Ai,1×(m:1)m, Ai,(1:m)(m–1), …, Ai,(1:m)1).

ai,mm

ai,2m

ai,1m

xi,m(m–1)

ai,2(m–1)

ai,1(m–1)

ai,m1

ai,21

ai,11

Ai,m×(m:1) = Ai,(1:m)×(m:1) = ……… …

…
…

… 	

		  (5.9)
The general backward coefficient matrix is:

	
= (Ai,1×(n:j), Ai,2×(n:j), …, Ai,m×(n:j))T

= (Ai,(1:m)n, Ai,(1:m)(n–1), …, Ai,(1:m)j).

ai,mn

ai,2n

ai,1n

xi,m(n–1)

ai,2(mn–1)

ai,1(n–1)

ai,mj

ai,2j

ai,1j

Ai,m×(n:j) = Ai,(1:m)×(n:j) = ……… …

…
…

… 	

		  (5.10)
►► Conventional time reversal models

Construct the following time reversal mapping:

	 Φ*
N:Xm×(N:1) → X i,M×(N–1:0),–D 	 (5.11)

where Φ*
N is a nonlinear mapping, that is

xMN

x2N

x1N

xM1

x21

x11

xM(N–1)

x2(N–1)

x1(N–1)

xi(N–M)

xi(N–2)

xi(N–1)

xi(–M+1)

xi(–1)

xi0

xi(N–M–1)

xi(N–3)

xi(N–2)
Φ*

N……… …

…
…

…

……… …

…
…

…
.

		  (5.12)
In this way, by constructing Φ*

N, it is possible 
to recover the past of the variable xi(i = 1, 2, ..., 
m) using existing data. Similar to the previous 
discussion,  we can establish the fol lowing 
backtracking reconstruction model (referred to as 
the D–1 model, i.e., backtracking by one step):

	

Ai,1(M:1)Xi×(M:1) = Xi(M–1:0),

Xi(–k) = Ai,1(M:1)Xi(–k+1), (k = 2, 3, …).
Xi(–1) = Ai,1(M:1)Xi0, 	 (5.13)

where i = 1, 2, ..., M. In addition, Eq. (5.13) can be 
written in the following universal form:

A(1:M),1(M:1)X(1:M)×(M:1) = X(1:M)×(M–1:0),

X(1:M)(–k) = A(1:M),1(M:1)X(1:M)(–k+1), (k = 2, 3, …).
X(1:M)(–1) = A(1:M),1(M:1)X(1:M)0, 	(5.14)
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where

	

A(1:M),1(M:1) = 

X(1:M)×(M:1) =

X(1:M)×(M–1:0) =

a1,1M

x1M

a1,11a1,1(M–1)

x1(M–1)

x1(M–2)x1(M–1)

x11

x10

x2M

xMM

x2(M–1)

xM(M–1) xM1

x21

x2(M–2)x2(M–1) x20

xM(M–2)xM(M–1) xM0

a2,1M a2,11a2,1(M–1)

aM,1M aM,11xM,1(M–1)

… …… …

…

…
…

…

…

…
…

… ……

…

…

…
…

… ……

,

,

.

	

In  addi t ion,  the  fol lowing backtracking 
reconstruction model (referred to as the D–j model), 
which backtracks j(j > 1) steps, can be established as 
follows

	

Ai, j(M:1)XM×(M:1) = Xi(M–j:1–j),

Xi(–j–k+2) = Ai, j(M:1)Xi(–k+2), (k = 2, 3, …).
Xi(–j) = Ai, j(M:1)Xi0, 	(5.15)

where i = 1, 2, ..., M. Eq. (5.15) can be written in the 
following universal form:

	

A(1:M), j(M:1)XM×(M:1) = X(1:M)×(M– j:1–j),

X(1:M)(–j–k+2) = A(1:M), j(M:1)X(1:M)(–k+2), (k = 2, 3, …).
X(1:M)(–j) = A(1:M), j(M:1)X(1:M)0, 	

		  (5.16)
where

	

A(1:M),j(M:1) = 

X(1:M)×(M–j:1–j) =

a1, jM a1, j(M–1)

x1(M–j) x1(M–j–1) x1(1–j)
x2(1–j)x2(M–j–1)x2(M–j)

a1, j1
a2, jM a2, j(M–1) a2, j1

aM, jM xM, j(M–1)

xM(M–j) xM(M–j–1) xM(1–j)

aM, j1

… …… …

…

…
…

… …… …

…

…
…

	

►► Time-lag time reversal models

Let J ≥ 1, we construct the following time-lag 
time reversal mapping:

	 Φ*
N:X([1:1+J]M)×(N:1) → X i,M×((J+1)(N–1):0).–D 	 (5.17)

This indicates that the information from the 
following 1 + J steps also needs to be considered. 
Similar to the discussion above, one can have the 
following equation

  Ai,M×([1:1+J]M)X([1:1+J]M)×((J+1)M:1) = Xi,M×((J+1)M–1:0). 	 (5.18)

where

	 Ai,M×([1:1+J]M) = (Ai,M×([M:1), Ai,M×([M+1:2), …, Ai,M×([M+J–1:J)), 	

		  (5.19)

 

X([1:1+J]M)×((J+1)M:1) = (XM((J+1)M:1), XM×((J+1)M+1:2), 
                             …, XM×((J+1)M+J–1:J))

T

=

XM×((J+1)M:1)
XM×((J+1)M+1:2)

XM×((J+1)M+J–1:J)
…

	 (5.20)

 
Xi,M×([J+1]M–1:0) = (Xi(0:(J+1)M–1), Xi(1:(J+1)M), …, 
                        Xi(M–1:(J+1)M+M–2)). 	 (5.21)

Firstly, a time-lag backtracking reconstruction 
model (referred to as the TLD–1(1 + J) model), which 
take one step backtracking from the information 
of the following 1 + J steps, can be established as 
follows

Ai,1([1:1+J]M)X([1:1+J]M)×([J+1]M:1) = Xi((J+1)M–1:0),

Xik = Ai,1([1:1+J]M)X([1:1+J]M)(k+1), (k = –2, –3, …).
Xi(–1) = Ai,1([1:1+J]M)X([1:1+J]M)0, 	(5.22)

where i = 1, 2, ..., M,

	
Ai, 1([1:1+J]M) = (Ai, 1(M:1) , Ai, 1(M+1:2), ... , Ai, 1(M+J–1:J ) ),

Xi((J+1)  M–1:0) = (xi, ((J+1) M–1)    , xi((J+1) ,M–2)    , ... , xi0).
	

If it is written in general matrix form, Eq. (5.22) 
becomes:

	

A(1:M),1([–J:1]M)X([–J:1]M)×([J+1]M:1) = X(1:M)×((J+1)M–1:0),

X(1:M)k = A(1:M),2([–J:1]M)X([–J:1]M)(k+1), (k = –2, –3, …).
X(1:M)(–1) = A(1:M),1([–J:1]M)X([–J:1]M)0, 	

		  (5.23)
where

X(1:M)×((J+1)M–1:0) =

x1((J+1)M–1)
x2((J+1)M–1)

xM((J+1)M–1) xM((J+1)M–2)

x1((J+1)M–2) x10
x20

xM0

x2((J+1)M–2)… …… …

…

…
…

X(1:M),1([1:1+J]M) =

A1,1(M:1) A1,1(M+1:2) A1,1(M+J–1:J)

AM,1(M:1) AM,1(M+1:2) AM,1(M+J–1:J)

A2,1(M:1) A2,1(M+1:2) A2,1(M+J–1:J)… …… …

…

…
…

,

.

When j > 1, we establish a time-lag backtracking 
reconstruction model (referred to as the TLD–j(1 + J) 
model) that uses the information of the following (1 
+ J) steps to make backtracking  steps in advance

	

Ai, j([1:1+J]M)X([1:1+J]M)×([J+1]M:1) = Xi((J+1)M–1–j:1–j),

Xi(k–j) = Ai,j([1:1+J]M)X([1:1+J]M)(k+1–j), (k = –2, –3, …).
Xi(–j) = Ai, j([1:1+J]M)X([1:1+J]M)0, 	

		  (5.24)
where i = 1, 2, ..., M,
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Xi(J+1)M–1– j:1– j) = (xi( j+1)M–1– j, xi(J+1)M–2– j), …, xi (1– j)).

Ai, j([1:1+ j]M ) = (Ai, j(M:1), Ai, j(M+1:2), …, Ai, j(M+j–1:j)),
	

If it is written in general matrix form, Eq. (5.24) 
becomes:

	

A(1:M), j([1:1+J]M)X([1:1+J]M)×((J+1)M:1) = X(1:M)×((J+1)M–1–j:1–j),

X(1:M)(k–j) = A(1:M), j([1:1+J]M)X([1:1+J]M)(k+1–j), 
                     (k = –2, –3, …).

Xi(–j) = A(1:M), j([1:1+J]M)X([1:1+J]M)0, 	

		  (5.25)

	
AM, j(M:1)

A2, j(M:1)

A1, j(M:1)

AM, j(M+1:1)

A2, j(M+1:1)

A1, j(M+1:1)

AM, j(M+J–1:J)

A2, j(M+J–1:J)

A1, j(M+J–1:J)

A(1:M), j([1:1+J]M) = ……… …

…
…

…
,

		  (5.26)

	
xM((J+1)M–1–j)

x2((J+1)M–1–j)

x1((J+1)M–1–j)

xM(1–j)

x2(1–j)

x1(1–j)

xM((J+1)M–2–j)

x2((J+1)M–2–j)

x1((J+1)M–2–j)

X(1:M)((J+1)M–1–j:1–j) = ……… …
…
…

…
.

		  (5.27)
For the time reversal model, it is also possible 

to consider introducing the time-lag information to 
modelling.

Conclusion and Discussion

In this paper we introduce the framework of 
the modelling theory of the DSDL. Firstly, on the 
basis of attractor theory, we construct the linear 
and conventional nonlinear prediction models of 
the DSDL by introducing the dynamical evolution 
mapping relationship between non-delay and delay 
attractors of dynamical systems. Meanwhile, the 
corresponding predictor-corrector models are 
presented. We introduce the concept of key variables 
for interpretability of the model, and propose two 
ways for how to implement the set of key variables. 
Secondly, to take time-lag information into account, 
we construct the time-lag mapping between previous 
information evolution matrix and univariate delay 
matrix, and thus establish the time-lag models and 
corresponding predictor-corrector models as well. 
Furthermore, we establish the nonlinear extension 

relationships between non-delay attractor and 
differential attractor. As a result, the differential 
attractor mapping models are established, which 
contain the conventional differential attractor 
mapping models, time-lag differential attractor 
mapping models and corresponding predictor-
corrector models. Besides, it is also a very important 
issue to infer the past from the present of a 
dynamical system. For this, therefore, we construct 
the time reversal mapping between the backward 
evolution matrix and univariate backward extension 
matrix, and in turn, build the time reversal models, 
which contain the conventional time reversal models 
and time-lag time reversal models.

In fact, there are essential differences among 
dynamical, statistical, ML and DSDL models, as 
shown in Fig. 2. Both statistical model and ML 
model cannot guarantee the consistency between 
model attractor and the attractor of the original 
dynamical system. Practice (Wang and Li, 2024a, 
b; Li et al., 2025; Wu et al., 2025) has proven that 
the DSDL, which combines nonlinear dynamics 
theory with deep learning technology, effectively 
enhances the predictive capability of chaotic 
dynamical systems and achieves transparency in 
prediction models. Compared with state-of-art ML 
or deep learning methods, the DSDL demonstrates 
its significant superiority and excellent ability in 
purifying polluted information. In addition, the 
DSDL solves the “black box” problem and opens 
up a new path for constructing more reliable and 
transparent prediction models.
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