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Abstract

This article mainly introduces the framework of the modelling theory of dynamical system deep learning
(DSDL). On the basis of attractor theory, we construct a series of DSDL models by establishing the nonlinear
extension relationships between delay and non-delay attractors, between non-delay attractor and differential
attractor, and time reversal mapping as well. These DSDL models mainly contain the conventional nonlinear
prediction models, time-lag models, differential attractor mapping models (the conventional differential
attractor mapping models and time-lag differential attractor mapping models), and time reversal models (the
conventional time reversal models and time-lag time reversal models). In addition, we discuss key variables

and differences among dynamical, statistical, machine learning (or artificial intelligence) and DSDL models.

Introduction

Since Lorenz (1963) discovered the phenomenon

attractors with the observed data of the system.
For a compact and finite-dimensional manifold,

of chaos, how to predict nonlinear chaotic dynamical Takens (1981) gave the delay embedding theorem

systems has become an important issue due to their
extreme sensitivity to initial values. Usually, when
the control equations of a nonlinear dynamical
system are known, numerical solution is the primary
choice for solving this problem. However, when the
control equations of a nonlinear dynamical system
are unknown, other methods need to be used. In the
era of big data, machine learning (ML, or artificial
intelligence) has become an important rather than the
only option to solve the problem. Due to the inherent
limitations of ML methods, utilizing the inherent
property of attractors in nonlinear chaotic dynamical
systems (Li, 1997; Li and Chou, 1997, 1998, 2003)
allows us to attempt to establish prediction models

by combining the delay embedding theorem of

in state space reconstruction for obtaining complete
information about the states of dynamical system in
the observed time-series through the delay mapping.
Robinson (2005) extended the Taken’s embedding
theorem to infinite-dimensional partial differential
equations (PDEs). Yap et al. (2014) and Eftekhari et
al. (2018) further extended the Taken’s embedding
theorem to the case in noisy conditions.
Komalapriya et al. (2008, 2010) presented the
inverse delay embedding theorem. Ma et al. (2014,
2018) used the inverse delay embedding theorem
to make prediction for short-term high-dimensional
time series. This article attempts to establish the
modeling theory of DSDL and various kinds of
DSDL models using the inverse delay embedding
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theorem based on the attractor theory.

Let i, j, k, m, and n be integers, j < m, j < n, and
let the row vector be

KXim = (s Xignys s> Xin)s (1.1)

Ausim = @iy @ipigenys oo s i), (1.2)

The Column vectors are
KXy = @iy X(jityis oo s X)) s (1.3)

s Qi) (1.4)

Where the upper subscript 7 represents transposition.

Ai,(j:m)k = (aiJk’ i+ 1)ks -+

The forward evolution matrix (the evolution matrix

for short) is denoted as

Xy Xigeny e Xin
Xy Xggipy e Xy
Xm><(j:n) = X(l:m)x(j:n) = : : :
X X1y =+ Xin (1.5)
= (Xl(_/':n)s XZ(/':n)a sy Xm(j:n))T

= ()((l:m)p X(l:m)(,'ﬂ), ey X(l:m)n)-

When j = 1, the evolution matrix is denoted as

X Xigo - Xy
Xop Xy eee Xy
men = /Y(l:m)x(l:n) = : . :
Xt Xm2 o0 X (1 6)

= ()(](l:n)’ )(2(l:n)s vy Xm(l:n))T

= (Xv(l:m)l) Xv(l:m)Za e a)((l:m)n)'
The forward univariate delay matrix (the

univariate delay matrix for short) is denoted as

xxi/' ;i(/ﬂ) . xxf”
X?(j:m)x(j:n) _ i(:,’+]) 1(/;2) i(n?l)
Xim Xigne1) Xioren-) (1.7)
= (Xx( Jonys XiGje1me1)s oe s )(i(m:mﬂlff))T
= (X—,-r(,-;m), XIT(,-+1;m+1), ey X'};HZWI*’”T/‘))

When j = 1, the univariate delay matrix is denoted as

Xip X oeee X
Xp X < X+l
D _ D _ i i i(nt1)
Xi,mxrr - Xi,(l:m)x(lzn) - N . .
KXim Xigm+1) =+ Xigmn-1)

= (Xi<1:n)s Xi(z;nﬂ), ey ‘Xvi(m:ern—l))T
T T T
= (Xi(l:m)a Xi@metys v » Xi(n:mﬂlfl))'
(1.8)

The coefficient matrix is denoted as

i Qi 0 diam
Aipon = Aimyam = aifZI ai:,zz alfzm
iy Xim2 =+ Aigm (1.9)
= (Ai,l(l:m)s Ai,Z(l:m)’ ey Ai,m(l:m))T
= (Ai,(l:m)ls Ai,(l:m)Z’ ey Ai,(l:m)m)'

The general coefficient matrix is denoted as

aiy diagay oo+ i

_ | Gy iy eee Ging
Ai,mX(/:n) - Ai.(l:m)X(/:n) - . . N .

Aimj XimGry - Qimn

= (Ai,l(/:n)a Ai,Z(j:n)a ey Ai,m(/':n))T

= (Ai,(lzm)j, Ai,(]:m)(/‘+l)9 cey Am:m)n)-

(1.10)
Dynamical Evolution Relationship
Between Non-delay and Delay Atiractors of

Dynamical Systems and Corresponding
Model Construction

» Mapping relationship between non-delay and

delay attractors

Let the non-delay attractor evolution matrix of a
m-dimensional dynamical system, i.e., the evolution
time series matrix, be

xi(t) xi() - xi(2)

X([): xZ:(tl) XZQZ) xz(:tn) (21)

xm(’l) xm(tZ) xm(tn)
If the time series are observation data, the evolution

matrix of the above system is simplified

X XL X
Xop X .. Xy

X,0= . co 2.2)
xml X2 oo X

Let the delay attractor evolution matrix of a single
variable X; be

Xi X eee Xi
Xpn Xpn Xins
D _ i i in+1)
Xi,mx(lzn) - : : : . (23)
Xim  Xign+1) <+ Xignint1)

According to the Takens’ Theorem (1981) and its
extensions by Robinson (2005), Yap et al. (2014),
and Eftekhari et al. (2018), we can establish the
dynamic evolution relationship between non-delay

attractor and delay attractor below
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@NIXW,,*Xme(]:n)a 24

where @, is the nonlinear mapping, i.e.

X X2oo-ee Xy X X Xy
Xop X eer X | Oy [ xp xp o Xien
T T Bl IR :
Xt Xpa oo X Xim Xign+1) +++ Xignin-1)

or

SiGen) file) - A0 X Xip s Xy
fz(szl) fz(xzz) fz(xzn) - sz -x.iS

L) Joons) - folrm)

< X1y

Xim Xigmt1) *++ Xigmtn-1y
2.5)
where f; (i = 1, 2, ..., m) are the nonlinear functions.

» Linear prediction model

Firstly, we consider the simplest linear case to
provide reference for establishing nonlinear models

in practice. From Eq. (2.5), one has

Ai,mxm:mesz[i?mxm: (26)

wherei=1,2, ..., m,

it diz -0 iy
iy dinn -+ digy
Ay = . S
P 2.7
a[,m] ai,mZ a[,mm
= (Ai,l(lzm)a Ai,Z(l:m)a vy Ai,m(l:m))T:
mem = (Xl(l:m)a )(Z(I:rn)a LA )(m(l:m))T (2 8)
= ()((I:m)l’ Xamys - )((l:m)m)a
D _
Xi,me - ()([(l:m)y )([(Z:rnﬂ), LXXIEY )(i(m:Zm—l))T (2 9)

T T T
= (X::,(l:m): Xi,(2:m+l): oo s Ximam 1)
A linear prediction model can be constructed using

Eq. (2.6). Letn >m,

men = (‘mem X;X(mﬂ:n))a (210)

D D DP
Xi,mxn = (Xx,mxm Xi,m><(m+l:n))5 (2 1 1)
where
X e X
X, = ’ 2.12)
Xl s Xm
Xim+1y 0 X
P .
me(m+1:n) = ’ (2.1 3)
Kinm+1) *** X

Xil Xim
Xown=1{ : , (2.14)
Xim  vor Xim-1)
Xigmt1y =+ Xin
Xﬁfnﬂzzm)x(w;m: . (2-15)
Xiamy *** Xinm-1)

Therefore, the above evolutionary relationship is

represented as follows:

_ D
- Xi‘me:

A; X,

Lmxm< mxm

(2.16)

Ai,mmefnx(mH:n) = Xi],)(l:nﬂ:zmx(mﬂ:n)- (2.17)
Eq. (2.16) yields the coefficient matrix A,,.,.-

Since X,-,D(‘,)Mﬁm)x(mﬂ:n) contains the variables to be
predicted, it is called as the sample prediction matrix

of . For clarity, let

_ yDP
Xi,{m+l:2m)><(m+l:n) =X 2myx(m+1:m)*

(2.18)
i.e., Eq. (2.17) can be expressed by

DP _ oD
Ai,mme(mH:2m)><(m+1:n) - Xi,(m+1:2m)><(m+l:n)'
It can be easily written by the commonly used form

of the prediction model as follows:

b 3
Xi,(m+l 2m)x(m+1mn) Ai.meX([r)nal:Zm)X(mH ) (2 1 9)
» Nonlinear prediction models

In fact, @, is a nonlinear mapping, and in order
to establish the dynamic evolution relationship
of Eq. (2.5), some new variables need to be
introduced. In practice, in order to obtain an
explicit relationship, f; can be set as elementary
functions, usually power functions, sine and cosine
functions or their combinations. We can construct
a hierarchical structure based on the order of the
monomial (denoted as L), where the sine or cosine
function can be treated as an alpha-variable. For
example, for the first layer L = 1, it introduces all
first-order monomials (with a number of C), and
the set composed of these first-order monomials is
denoted as [,; For the second layer L = 2, on the
basis of the first layer, all second-order monomials
(with a number of C2,,) are introduced, and the
set composed of these second-order monomials is
denoted as [,; For the -th layer, on the basis of the

layers [, U I, U L, ,, all L-order monomials (with



BV HEEHRR G TG ED AAE AR

Part IV Standardization of Ocean Carbon Trading and Climate Change Assessment

a number of C%,, ) are introduced, and the set
composed of these L-order monomials is referred to
as [;. If the sum of the numbers of all monomials in
the nonlinear part of £; is /, and its maximum number
is /=% .., then [ variables x,(i =m + 1, ..., m
+ /) are introduced to correspond to these terms, and

the following relationship can be established

Ai,MxMXMxM = XE)MXM: (2.20)
where M=m +1,i=1,... M,
Aiyrrr = @iy Aipaians - Ai.M(l:M))Tn (2.21)
Xirar = Xians Xoimns ++ o5 Xnarnn) (2.22)
= ()((I:M)la X(l:M)Za cees )((I:M)M)a
Xrsar= Kians Xiassery - Xiarare)"
vt = (Kians X (2M1)) (2.23)

= (X{(le), X:T‘<2:M+1)’ cees X‘:“(M:ZM—I))'
Then a prediction model can be constructed using
Eq. (2.20). Let N> M,

p
Xusv = (Xapaar XMX(MH:N)); (2.24)
XDy = (X7, X
ey = (Xiapar DV (2.25)
where
Xipooeee Xy
Kops = , (2.26)
Xu o0 Xy
Xiery w00 Xy
P _ . . .
XMX(A/H];N) - : . : 5 (227)
Xnmety -+ Xun
Xil Xinm
D .
Xine= , (2.28)
Xive +-+ Xiemen)
Ximr1y o Xin
DP _ .
Xitvri2mean) = (2.29)
Xiamy -+ Xigveane)

Therefore, the above evolutionary relationship is
expressed as follows:

A pissXsers = Xiserrs (2.30)

P _ yDP
Ai,MXMX(MH:ZM)X(Mﬂ:N) = X or2meetny: (2.31)

Here X L[)('ZMQM)X(MH;,\,) is the prediction matrix for the
sample x;. For simplicity and clarity, let

vD

_ yDP
X (M 12MY<(MEN) — X i, (MHL2M)% (M+1:N)- (2.32)

Then Eq. (2.31) is expressed as

A:,MXMXIZ:/Ix(MH:N) :X?(MH:ZM)X(MH:N)' (2-33)

The first row of Eq. (2.20) cannot be used for
prediction, so a prediction model is established
from the j-th (j = 2, ..., M) row, that is, the following

mapping is constructed:

(DN:XMXN_>X?(/‘:MJrj—I)X(I:N)r G=2,...,M). (2.34)

Forj=2,
Ai,z(l;M)XMxM = A/i(Z:MJrI)_)Ax,Z(I:M}/‘/(l:M)(MH) = )Afi(.wzy
_)Ai,Z( 1 :M)X( LM (M+2) — 55;(/\4+3)

—>Ai,2(1:1\/l))((1:1\/l)(M+k) = Xik+1) (k=2,3,...).

(2.35)
This achieves the prediction of the variable x,(i = 1,

2, ..., m). In fact, we can establish the following
delay prediction model (referred to as the D,
model, which means making predictions one step in

advance):

Ai,Z(]:M)XMXM = )(i(Z:MH):

X;<M+2) = Ai,Z(l:M))(i(MH)a
Xx(mkﬂ) = A;,z(l:M)Xf(Wk), (k: 2,3, )

(2.36)

where i = 1, 2, ..., M. Although the M equations
are established here, in fact, only the original m
variables of the system need to be solved, and other
nonlinear terms can be obtained immediately. We
can also write Eq. (2.36) in a universal matrix form

below:
Aqan20:mXvsn = Xy
Xamor = Aamaaam Xaapoe
X(l:M)(M+k+1) = A(I:M),Z(I:M))((I:A/I)(A/Hk)a (k=2,3,...).

(2.37)
where
oy ipp oo dipy
o1 Aoy --- oy
A = s
(1:M).2(1:M) : : :
Ayt Ay -0 Ayoy
X X2 o X
Xor Xt Xowm
XM-( 2 X |,
X Xt Xuwm
X2 Xiz oo Xy
X _ | X2 X < Xo(my
(1:M) x 2:M+1) = . . . .
Xwp X < Xy

When j > 2, the corresponding delay prediction

models can also be established, e.g., for j =3
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T ~
A[,3(1:M)XM><M = Xi(z:M+2) g A[,3(1:M))((1:M)(M+l) = Xims3)
d A;,s(l:M)X(l:M)(wz) = 5‘:\[(M+4)
g Ai,}(l:A/[))((]:A/I)(A/Hk) = 3?,'(M+k+2), (k=2,3,...).

(2.38)
For the general j (> 2), we have

e -z
Ai,/‘(]:M)XMXM = Xi(/':MH—l) - Ai,/'(l:A/[))((I:A/I)(MJrl) = Xim)
- Ai,/'(l:M)X'(I:A/[)(MJrZ) = Xiwj1)
i Aix/(l;M))((l;M)(MJrkﬁfZ) = Xi(M+hj-1)» (k =2,3,..).

(2.39)
Therefore, when , the following delay prediction

model (referred to as the model), which can make a
prediction steps ahead, can be established below:
Ai,j(l:M))(x\/[XM = Xi(j;Mﬁ;l),
X’(Mﬁ) = A; 0. X1 (2.40)
X(Mfﬁ»kfl) = Ai,/(l:]\/l)j(i(MJrk)a (k=2,3,...).
where i =1, 2, ..., M. We can also write Eq. (2.40) in

a general matrix form as follows:
A, jaanXasnr = XaansGiarj 1
Xy = A, jaanX o
X(l:m(M+j+k+1) = A(l:M),j(]:/\/I))((]:}\/I)(M+k)a (k =2,3, )

(2.41)
where

Ay Qup ... Ay
| Qi Gy eee Qo

Aqaan jan = : o p
Ayt Ay -~ Augm

Xy Xigey -0 X o)

_ | M Xagry e Xoasn

A jan = : : ’
X X1y -+ X -1

As can be seen from the above, when j = 2, the
prediction model D, (i.e. Eq. (2.36) or Eq. (2.37))
uses the least number of observations. But when
J > 2, the prediction model Dy (i.e. Eq. (2.40) or Eq.
(2.41)) can predict K = — 1 steps in advance.

For the D, model (i.e. Eq. (2.36)), the following
predictor-corrector delay model (referred to as the
PCD, model) can be established for predicting one

step in advance:

AI,Z(I:M)XMXM = )(i(Z:MH),

X iM+2) = Ai,Z(]:M)/Yi(MH)s
~ 1 o
KXiara) = 2 Az,z(lzm(Xi(M+1)+X i(M+2))5

- 242
X, i(Mk+1) = Ai,z(l:.’l/l))(i(M+k)a ( )

1 ~ _
Xi(M+k+1)= 71‘1:',2(1:1\4)()(1‘@\4%) +X i(M+k+1))7
k=2,3,...).

where i =1, 2, ..., M. If it is written in general matrix

form, Eq. (2.42) becomes:

-

A(l 20 Xasar = Xtans@:ar
Xanarn = A(I:M),Z(I:M))((I:M)(Mﬂ)a

~ 1 _
KXo = ?A(I:A/I).Z(I:}l/l)()((lzl\/[)(MH) + X(l:M)(M+2))a
Xanaern = Aaan 20X asms

Xamssien) = o Aqan20:nXaanoen T Xaapaeen)s
(k=2,3,..).

(2.43)
Following the above, a predictor-corrector delay

model PCDy, which can predict K = — 1(j > 2)

steps in advance, can be established.
» Key variables

In the course of modeling, although there are
many initial variables, in fact, many variables are
irrelevant variables that need to be eliminated, and
only the variables that are crucial to the system’s
evolutionary behavior are retained, which are
called the key variables. How to find these key
variables and remove irrelevant variables is the
key to modeling and interpretability of the model,
which requires the use of big data and the design of
suitable judgment indicators for removing irrelevant
variables. Assuming there is a suitable criterion
system / for removing irrelevant variables, there are
two ways to find the set of key variables (Fig. 1).
One way is to research and judge the key variables
in each layer (Fig. 1a); Another approach is to
involve the set of key variables obtained from the
previous layer in the search and determination of
key variables in the next layer (Fig. 1b). The latter
method may save computational resources when
there are numerous system variable parameters. As
for which method is more effective, it needs to be

judged specifically in practice.

Time-lag Models

Essentially, the mapping (2.5) does not fully
consider time-lag relationship, that is, does not
fully utilize the previous information of the system,
which may lead to a decrease in the accuracy of
the model prediction. Therefore, it is necessary to
extend the prediction model. Let J > 0, we construct

the following time-lag mapping between previous
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(a) Layer 1 Layer 2

Layer L

L, L UL,

[ [
Iz:c;nl |z=c;+ =

l = Zf:lcimi—l

K, K, Ky
I I
L& ] [&]
(b) Layer 1 Layer 2 Layer L
L, K,UL, K, UL,
I I
|l :Crln| |Z :k1+ Cfml | l:kL71+ C{‘mLfl
K, H—| X, K,

Fig. 1 Two ways to implement a set of key variables. (a) Redefine the set of key variables for
each layer. (b) The set of key variables from the previous layer is involved in determining the
key variables for the next layer. In the figure, [, represents the set of i-th order monomials in
the i-th layer, / represents the sum of all monomials in the corresponding layer, / is a determined
indicator system for removing irrelevant variables, [K; is the set of key variables in the i-th
layer, and £, is the number of corresponding key variable

information evolution matrix and univariate delay

matrix:

3.1)

That is to say, we need to consider the information

D
‘p/viX([ SN m)xn _’Xi,mx(lz(J+2)n)»

from the previous 2 + j steps. As above, let f; still
be elementary functions, so that Eq. (2.20) can be

transformed into
_ D
Ai,MX([—J:l]M))(([—J:l]M)X(l:(J+2)M) _Xf,Mx(l:(J+2)M)~ (3'2)
where the coefficient matrix

Ai,MX([—J:l]M) = (Ai,MX(le)a Ai,MX(Oszl)y sy A[,MX(—J:M—J—I))a

3.3)
the previous information evolution matrix
)(([—.I:I]A/IJX(I:(JJrZ)A/I) = (XMX(]:(J+2)M)9 XMX(O:(.HZ)M—]): ceey
T
XM><(—J:(J+2)AM—J—1))
34

KXystoom
= | Xwouoney |,

Xysrums )

the univariate delay matrix

) A/i(M:(‘HZ)MJrM—I ))~
(3.5)
Similarly, the first row cannot be used for prediction.

D
Xi,MX(l:(J+2)M) = ()(i(l:(J+2)1\4)9 )(i(z:(J+2)M+])7 .

A corresponding prediction model can be established
from the j-th (j = 2, ..., M) row. When j =2, a
time-lag prediction model (referred to as TLD,(j
+ 2) model), which uses the information from the
previous 2 + J steps to predict one step in advance,

can be established as follows

Ai,Z([—J:]]M))(([—J:]]M)><(l:(J+Z)M) = Xia:umy

X:‘((J+2)M+2) = Ai.2([7J:1]M)AX'([7J:1]M)><((J+2)M+1)’

(3.6)
KXoy = Aipernn X s

k=2,3,...).
wherei=1,2, ..., M,

Ai,2([—J:l]M) = (Ai,Z(I:M)> Ai,Z(O:M—l)a v Ai,Z(—J:M—J—l))’

Xf,(2:(J+2)M+|) = (xiZa Xizy vee s xi(J+2)M+l)'

If it is written in general matrix form, Eq. (3.6)

381
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becomes:

A(I:M,Z([—J:l]:\/f))(([—J:]]}\/I)X(I:(J+2)A/I) = X(I;M)xa:uﬂwﬂ),

‘X(lif\/f)((ﬁZ)M*Z) = A(I:MJVZ([*J:1]1\/1))(([411]1‘/1)*((/*2)1‘4*1)’

~ " (3.7)
KXoy = Ao 2 Xm0,
(k=2,3,...).
where
Apa Arvaomey Avacrarrn
4 _ 220:m)  A220:m1) 22(-J:M-J-1)
(M) 2(F1M) = : : : : 5
Apaaiy Avpoaey - Aupcons
3.8)
X1 X3 X1(+2)M+1)
Xoy X3 Xo((+2)M1)
)((I:A/I)x(z:(J+Z)M+1) = : : (3.9)
X Xap o -oo Xagur2)mrl)

When j > 2, we establish a following time-lag
delay prediction model (referred to as the TLD,(J
+ 2) model) that utilizes the information from the
previous 2 + J steps to predict K = — 1 steps in

advance:

Ai,/’([—J:IL (1M (1L+2)M) —

i(:(H2)MH-1)s

)(i((1+2)Mﬁ) = Ai,j([*ﬁl]M)X'([fJi1]M)X((J+2)M+1)=

- « (3.10)

)(((J: DMY((J+2)Mjtk-1) — Ai, S ]M)X(H; 1IMY((J+2)MHk)>
k=2,3,..).

wherei=1,2, ..., M,

Ai,/’([—J:l]M) = (/41’,/'(1:}\4)’ Ai,/’(O:M—l)’ (A1) Ai,/’(—J:M—J—l))’

)(i,(/':(J+2)M+j—]) = (xij, Xi(+1)s =+ » xi((J+2)M+j—])'
If it is written in a general matrix form, Eq. (3.10)
becomes:
A, jsmX e oemn = Xaaoes s
A)?(I:M)((JH)MH) =Aqm, f(H:IJMX([—J:AIJM((ﬂz)Mﬂ)s

A/((—J:I)M)((Jﬂ)/"f*j*k*l) = A(lZM)J([*Ji1]M))(([*J:1]M)((J+2)M+k)’

(k=2,3,...).
(3.11)
where
Al‘j(l:M) Al,/(O:M—I) Al,j(—J:MfJ—I)
_ 2,j(1:M) 2,j(0:M-1) *** A2 j(-J-M-J-1)
A(l:M)J(H:l]M) - : : : ’

AM,j( JM-J-1)

(3.12)

AM,j(l:M} AM,j{O:M H e

Xy Xigeny oo X1
[ Xy Xageny e Xouemon

Xy = : : :
Xng X1y« Xme2)Mj-1)

(3.13)
For the TLD, model (i.e. Eq. (3.6)), the following

predictor-corrector time-lag delay model (referred

to as the PCTLD,(J + 2) model), which uses the
information from the previous J + 2 steps to predict

one step ahead, can be established below:

Ain X s = Xiaomsn,

X (F2)M2) = A 21 ]M)X( [/ 1MY((J+2)M+ 1)

KXo = 714,',2([4: I]M)()(([—J: 1 meny TX i((J+2)M+2))5

Xioomern = Aiaqrnmn X i@,

KXoy = jAi,2<[—J:11M>(X([—J:1]M)(<J+2>M+k)r
+ Xi(]:}\/[)((J+Z)M+k+1)) (k =2,3,.. )

(3.14)
where 7 = 1, 2, ..., M. If it is written in a general

matrix form, Eq. (3.14) becomes:

-

A(l:A’lfl),z([—J:l]]\/!)AX([—J:I]]\/I)X(l:(./+2)M) = Xoapuonmey

X = A(I:M),Z([—J:I]J\/I)‘X([—J:ILM)((JJrZ)MJrI)a
1

)((I:M((J+2)M+2) = ) A(l:M),Z([—J:l]ll/l)()(([—J:]]A/I)((J+2)M+])
+Xa :M)((./+2)M+2))a
X MM = Aq M)2([-J: 1 ]M)X(H; 1IM)Y(J+2)M+k)s

X(l:m((J+2)M+k+1) = 7"4(1:A/I).Z([—J:I]A/[)(Xv([—‘/:1]M)((J+2)M+k):
+ Xam@amen) (6=2,3, ...

(3.15)
Following the above, a predictor-corrector time-

lag delay model PCTLDy(J + 2), which uses the
information from the previous J + 2 steps to predict
K=j—1(j > 2) steps ahead, can be established.

Differential Attractor Mapping Models

» Conventional differential attractor mapping

models

In fact, there is a sampling time interval in the
observation data, however, the mapping (2.5) does
not consider this issue. The description of system
evolution may vary depending on the sampling
time interval, therefore, the sampling time interval
should be considered. Let / be the sampling interval,

we construct the following differential attractor

mapping:

DyihX, ey —> AX ety 4.1
where
%il dxiZ e ddxm
A= | 7T e @)
A Aty - Ay
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where

dixy = Xigeny = Xy (4.3)
As above, let f; still be elementary functions, so that
a prediction model can be established for each row.
For j = 1, we can establish a differential prediction
model (referred to as the DD, model) that predicts

one step ahead of schedule as follows:
hAi,](l:M)XMXM = dXi(l:M),
Xi(M+2) = Ay + hA:,l(l:M))(i(MH)a
Xi(.w+k+|) = Aimky + hAxﬂl(l:M}Xvi(MJrk): (k: 2,3, )

4.4
where i = 1, 2, ..., M. We can also write Eq. (4.4) in

a universal matrix form:

hA(]:M),](I:M)XMXM = dX(mv/)x(l;M):

X(]:M)(M+2> = )((I:M(MH) + hA(]:A/I),l(]:M)A/(l:I\/I)(MH):

X(l:M)(M+k+1) = )((1:1\4)(1\4+k) + hA(l:M),](l:M)X(uM)(Mm,

(k=2,3,...).
4.5)
where
an i ayim
A Ay 1M
A(I:M)XZ(I:M) = . . . ’
Ay Az - Auy
Xy X Xy
Xo1 Xppo vt Xom
Xy = ( : [ ’
Xun X Xvm
dxyy  dxp, dxy
_ dxy  dxy dxay
dXaanr:n = : : e
dxyp  dxyp - dbxyy

For the general j, we can establish the following
differential delay prediction model (referred to as
the DD; model) that predicts the j steps in advance:

hA; jaXaserr = AXigamy 1),
X(Mf/‘rl) = Ay + hAg/(l;M)Xi(MH),
X(WﬁH) :A)(i(/\/HjJrku) + hAi,/(l:/v;Xi(M%)a (k=2,3,...).

(4.6)
where i = 1, 2, ..., M. We can write Eq. (4.6) in the

following universal form:

hA(l:ML /(1:M)XMxM = d/\/(lzj\/l)x(/':Mﬁfl)’
X = +
KXaonorson = Xaapars hA(l:m,j(le)Xu:M)(Mﬂ),

Xonorien = Xaaparjio) + hA ., X v
h=2,3,..).

A.7)

where

ain dip ajim

| G B . im

A(I:A/I)XZ(I:]\/[) - . . : >

Ay Aujp - Qagu
dxlj dxl(m) dxl(Mﬁ—l)

_ dej iy ) de(M+j—l)

AX 1 apyeissrary = . . . .

dxM,- dXM(j+1) s dxM(M+j+1)

To improve accuracy, for the DD, model (i.e. Eq.
(4.4)), the following predictor-corrector differential
delay prediction model (referred to as the PCDD,
model) can be established to make predictions one

step in advance:

hAu(l;mXMxM:Xi(]:M),

Xf(M+2) = i) + hAi,l(l:M))(i(MH)’

KXiora = Xias + 2 Ai,l(l:M)(Xi(M+1) + Xi(M+2)),
Xi(M+A»+1) = Xi(M+k) + hAi,l(l:Il/l))(i(M+k)a

Xiorsiery = Xiowreny + inﬁl(I:M)()(i(MJrk) + Xiarin)s
h=2,3,..).

(4.8)
where i =1, 2, ..., M. If Eq. (4.8) is written in a more

universal form, it would be as follows:

( hA(l:M).l(l:M}XMXM = X(l:M)x(l:M),
X(l:M)(Mﬂ) = X(l:M)(M+1) + hA(l:M),l(l:mXu:m(Mﬂ),

-~ h
- + 4
Koo = Xamonn™ 2 AaaniamXaman
+ Xaanon2)s

KXoy = Xaanoen + hA(l:M),l(l:M}X(lzm(wk),

~ ~ ﬂ ~
X(|;M)(M+k+1) =X(|;M)(M+k>+ 2 A(l:.m,l(lzm(X(le)(mk)

+ /\7/(1:1\4)(M+k+1)),
k=2,3,..).

(4.9)
Following the above, a predictor-corrector model

PCDD; can be established to make predictions the j

steps in advance.

» Time-lag differential attractor mapping models
Let J > 0, we construct the following time-lag

delay mapping of differential attractor:

Dy h X yaymyen — dX?,m><(1:(J+2)n)' (4.10)

As above, if f; are still elementary functions, then

D
hALMX([ J;]]M)X([ JAIM<(1:(H2)M) — de,Mx(1;(J+z)M). (4.11)

where

383
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- Ai,MX(—J:M—J—l))a

(4.12)

Ai,MX([fJ:l]M) = (Ai,MX(l:M)’ Ai,MX(O:Mfl)a .

X = (XMX(]:(./+2)M)9 X’\/IX(O:(._?Z)M—I):
sy XMX(f./:(.HZ)M—Jfl))

Xos:nn (4.13)

= XMX(O:(J+2)M—1)

X MX(7J:(‘/.+2)M7171)

D
dx, LM(L2)M) (dX;(lz(.m)M), d)([(Z:(.H%)MH)’
cees d)(i(M:(.HZ)MJerl))

dXia. e (4.14)

(2 2)M 1)

d)(i(M:(JJrZ)MJrM—l)
Each row can establish a predictive model. Forj =1,
we establish the following time-lag differential delay
prediction model (referred to as the TLDD, model)
that utilizes the information from the previous 2 +.J

steps to make predictions 1 step in advance:

hAi‘l([ J;I]M)X([ JAM(L:(2)M) d)(i(l:(J+2)1\/I)a
X:((J+2)M+2) = i) + h/{i’.l([—J:l ]J\/I)Xv([—le]M)((JJQ)[VI)a
Xi((f+2)M+k+1)= i((J+2)Mtk)
+ hAi,]([ J:]]M)X([ JAIMY((J2)Mtk-1)s (k: 2,3, )
(4.15)
where i = 1, 2, ..., M. Eq. (4.15) can also be written

in the following universal form:

hAq s X smm-aom = AXaaao

)?(1:M><(J+2)M+£)=X(1:M><(J+2>M+1)+hA(1:M)J([—J:1]M>X([—J:IJM((J+2>M)’
X(l MY((J+2)MEkHT) AA/(l MY((J+2)M+k)

* hA(l:M)J<[—J:11M>)?<[—J:IJM>«J+2)M+A'—I>’ (k=2,3,..).
(4.16)
For the general j, a time-lag differential delay
prediction model (referred to as the TLDD,; model),
which uses the information from the previous 2 + J
steps to make predictions the j steps in advance, can

be established as follows

hAI)J'([*J:1]M)X'([*J:1]M)X(11(J+2)1‘4)= i(:(J2)MHj=1)>

)(i((J+Z)M+j+1)j I(J+2)M)) + hAL./'([*J:1]1\/1))(([4:1]1\/1)((/+2)1\4)’

)(i((.HZ)Mf/‘Jrk): (M1
+ hAi,l([—J:l]M))(([—J:1]1\/1)((J+2)1\/1+k—1)9 (k=2,3,...).

4.17)
where i = 1, 2, ..., M. Eq. (4.17) can also be written

in the following universal form:

R hA X oo = Xapgorme-n,
)QI:M((JH)M@):X(1:1\4)(<J+2>M+j)+flA<1:M)J<[—J:l]MX([—J:l]M((MMa
Xaanwnn = Xaanasga

* hA(l:MJ([—J:lJM)X(?—J:1]M)((J+2)M+k—1>’ (k=2,3,..).
(4.18)
In order to improve accuracy, for the TLDD,
model (i.e. Eq. (4.12)), a predictor-corrector time-
lag differential delay model (referred to as the
PCTLDD, model), which uses the information
from the previous 2 + J steps to predict one step in

advance, can be established:

hAi,l(Hzl]M)X(H:1]M)x(1:(/+z)M) = de(l:(J+z)M),
Xi((J+2>M+2) = Aj2)M1) Jrh hAi,l(H: I]M))(([—J: 1IM)((J+2)M)>

Xvi((J+2)M+2) = Ai2me) + 7 Ai.l([*JfllM)(‘X([fJiIJM)((J+2)M)

+ X:((J+2)M+2))9

Xiomern = i((J+2)M+k)+hA MK MMy

X‘«ﬁz)mkﬂ) = Xi((1+2>M+k)

+ 714[,1([—.]:I]M(/‘/([ﬁl:]]m((./+2)M+k) + )([((./+2)M+k+l))’

(k=2,3,..).

(4.19)
where i = 1, 2, ..., M. In addition, Eq. (4.19) can be

written in the following universal form:

p

hA(liM)’l([fJ:l]M)Xv([ffil]A/I)x(li(JJrZ)M): dXv(liM)X(li(JJrZ)M’
X = X
thA(lif\’f)vl([*JZI]M/Y([*J:1]M)((J+2)M)’
KXo = Xy T

h J—
714(1:114),1([4:1]1\4)()(([71:1]1\4)«#2)‘14) + )((I:M)((J+2)M+2))’
X SMY((J+2)MHRH) Xawonmsn
+hA(l:M),1([—./:l]M)A/([—4/:1]A/I)((4/+2)M+k—l),

KXaan@omsrn = Xaanraen

+ 7 A(l :M)yl([fJ:l]ﬂ/l)(‘X([*J:l]A/l)((Jﬂ)M*k) + ‘X(IZM((J*Z)MW*I))’

(*k=2,3,..).

(4.20)
Similarly, following the previous approach,

we can establish a predictor-corrector time-lag
differential delay model PCTLDD; that utilizes the
information from the previous 2 + J steps to make

predictions j steps in advance.

Time Reversal Models

When we discuss whether we can infer the past

changes of a dynamical system based on its existing
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evolutionary data, we need to establish a backward
mapping of the dynamical system over time. This
type of model is termed as the time reversal model.
This type of research is very interesting because
it has the potential to provide a new method for
reconstructing past changes of system, which is
very useful for reconstructing paleoclimate data, etc.
When establishing a time reversal model, we still

need to establish a symbol system.
» Basic notation

Let i, j, k, m and n be integers, j < m, j < n, and

let the backward raw vector be:

KXiongy = Cims Xig-1ys -5 Xi)s 5.1
Aisonyy = @igoms Wigmerys -+ -> Aig)s 5.2)
The backward column vector is:
)((m:j)i = (X X(m-1)is +++» xji)T’ (5'3)
Ai,(m:/')k = (ai,mka Ai(m—1yks +++» ai,jk)Ta (5'4)

The backward evolution matrix is denoted as:

Xin Xigeny ++ Xy
Xon Xo@er) -o+ Xy
Koty = Xetmyeepy = R
Xonn xm(n+1) e xmj (55)
=X () XZ(n:j)’ ceey Xm(n:j))T

= (X(l:m)m X(l:m)(n )5 ++os )((I:m)j)'

When j = 1, the backward evolution matrix is

denoted as:
Xin X1y 00 Xn1
Xon Xogr1y *+ Xai
me(n :j)=X(1 Smy<(n 1) : : : :

Xonn xm(n-l) et X

=(X](n : 1)>X2(n: l),"'>Xm(n: 1))T
:(X(l :m)mX(l :m)(n—l)y'"y)((] :m)/)

The univariate backward extension matrix is

denoted as:
Xigety  Xigay o+ Xy
X ;wa 1y =X Z?l:mx(,, = x"(’j*Z) xi(*;%) Xi(:f—l)
Xf(;;,m) x,»(n,'m,l) xf(/f'mﬂ)
= ()([(n—l:j)a X[(,,,l;j,l), ceey Xi(n—n1:,>m+1))T
- (X-"r(”*l n-m)> X-ir(an:nfmfl), ey XTUJ7M+])).
5.7)

When j = 0, the univariate backward extension

matrix is denoted as:

Xin-1y  Xi2y -+ Xio

Yo — v _ xi(f,fz) x[(tqa) x[(:l)
i,m*(n—1:0) i,(1:m)x(n—1:0) . .

Xitn-m)  Xitn-m-1) +++ Xicm+1)

— T

- )(i(nfl:o)a )(i(n72:71)9 B )(i(nfm:fmﬂ))
_yT T T

- (Xi(n—lzn—m)7 Xi(n—Z:n—mﬂ)s EEEE) Xi(O:—m+l))‘

(5.8)
The backward coefficient matrix is denoted as:

iy Aiigm-1) -+ din
Aiom  Ainm-1) -+-- dinl
Ai,mx(m:l) = Ai,(l:m)x(mzl) = '
ai,mm xi,m(m—l) s ai,ml
= (Ai,lx(m:1)7 Ai,2><(m:1)9 cees Ai,mx(m:l))T
= (i1 Aimon-1ys -+ Aitam)-
(5.9)
The general backward coefficient matrix is:
ity Aige1y -+ iy
Aion Qidmn-1) --- iy
Ai,mx(n;/) = Ai,(l:m)x(n;/') = . . . :
ai,mn x[,m(n—l) e ai,mj
_ T
- (Ai,lx(n:/')s Ai,Zx(n:/), L) Ai.mX(n:j))
= (Ai,(l:m)m Ai,(l:m)(n—l)’ sy Ai,(l:m)/')'
(5.10)

» Conventional time reversal models

Construct the following time reversal mapping:

*, -D
(p/v-me(N:]) - Xi.MX(N—]:O)s (5-1 1)
where @), is a nonlinear mapping, that is
Xiy Xiv-ny - Xni L Niaen Xin-2y -+ Xig
X.z,v xz(ivfl) x.ZI Py Xi(f\'u) -xi'(N—3) xi(.—])

Xiv-m) XiN-M-1) = -+ Xi-pe1)

(5.12)
In this way, by constructing @), it is possible

Xunv Xmv-1y +++ Xan

to recover the past of the variable x,(i = 1, 2, ...,
m) using existing data. Similar to the previous
discussion, we can establish the following
backtracking reconstruction model (referred to as

the D, model, i.e., backtracking by one step):

Ai,l(M:l ix(M:1) = AiM-1:0)

Xz’(—l) = Ai,l(le)Xio,
Xicw = Ao Xicien, (£=2,3, ...
where i = 1, 2, ..., M. In addition, Eq. (5.13) can be

written in the following universal form:

(5.13)

A(I:A/I).I(M:]))((I:M)X(M:]) = X(]:M)x(/w 1:0)>
KXo = Aamioey Xm0, (5.14)

X(I:M)( ) :A(]:M),](M:l))((l:M)( k) (k =2,3, )
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where
i Ay cee Ay
v Aoieny --- Aoy
A(I:M),I{M:]): : : : ’
Ayam Xmiery -+ Ay
Xiv Xieny oo X
B Xop Xogen)y - X
KXaaooen = . . . . 4
Xpve Xmy -+ X
Xy Xipe) o0 Xy

Xo1y  Xom2) -0 Xy
)((]:M)X(M—I:O) = : : : :

xM(’M—l) xM(];/[—Z) e X

In addition, the following backtracking

reconstruction model (referred to as the D_; model),

which backtracks j(j > 1) steps, can be established as
follows

A jory Xy = X
X‘(—j) = 4o Xo,
Xiiiny = A jo Xy (k=2,3, ..).
where i =1, 2, ..., M. Eq. (5.15) can be written in the

(5.15)

following universal form:
A joryXamoen = Xaapuji1»
X'(IIM)H) = A(IIMJ»J'(MI))((IIA’I)O’
)((I:M)(—j—kﬂ) = A(l:}\/[),j(/\/[:l))((lzlvl)(—kﬂ)a (k=2,3,...).

(5.16)
where

Ay Aijoey 0 i
4 | Qv Gajorry -- G
(MM — . . . .
Amjm Xmjoety -+ Auji

Xiorg)  Xi-ny o0 X))

Y | Xaor Xougeny - X2
(LM<(M-ji1) — : . :

Xy Xmaaj-) -+ Xario)
» Time-lag time reversal models

Let J > 1, we construct the following time-lag

time reversal mapping:

¢;/:)(([1:1+J]M)X(N: n— XiTA[/)IX((JH)(Nfl):O)' (5 1 7)

This indicates that the information from the
following 1 + J steps also needs to be considered.
Similar to the discussion above, one can have the

following equation

Aipirnmn X< nen = Xiyssoperor (5.1 8)

where

o Aipeuess1)s
(5.19)

Ai,MX([l:HJ]M) = (Ai,MX([}I/I:I)s Ai,MX([M+1:2)s .

X([1:1+J]M)x((1+1)M:1) = (XM((JH)M:I)s XMX((J+1T)M+1:2>,
sy XMX((J+1)M+J71:J))

Xop(ee) (5.20)

MX((JFH1)MH1:2)

KXyt

Xissreroy = Kooy Xig:usms -«
(5.21)

/Yi(M—l (1 )M+M72))'

Firstly, a time-lag backtracking reconstruction
model (referred to as the TLD (1 +J) model), which
take one step backtracking from the information
of the following 1 + J steps, can be established as

follows

A X aen = Xt
X[H) = A[,l([]:l+./]M))(([l:1+./]M)O,
X = Ai,l([l:1+J]M>X([1;1+J]M)(k+1)s (k =-2,-3,...).

wherei=1,2, ..., M,

(5.22)

5 Ai,l(M+J—1:J))’
s xi())'

If it is written in general matrix form, Eq. (5.22)

Ai,l([1:1+.]]M)= (Ai,l(M:I)’ Ai,l(M+1:2)a

X:‘({JH)M—I:O) = (xr‘,((‘lH)Mfl): Xi(+1)M-2) -+

becomes:

A X mmarenen = Xampxnseron
X = AaupaermmXsmamos
)?(I:M)k = A(1:M).Z([—J:I]M))?([—J:I]M)(kﬂ)a (k=-2,-3,..).
(5.23)
where

< Avjassa
- Az yassr s

Al,l(M:l) A1,1(M+1:2)

_ 2,1(M:1) 2,1(M+1:2)
/\/(1:1\4),1([1:1+J]M) - : :

AMI(M:I) AMI(M+1:2) oo Anpiara)

Xi+ym-1y  Xi+pm2)y -+ Xio

| Xy Xaenmay e Xao
X<1:M)X<(J+1)M—1:0) = . . . .

Xugeoneny Xugeona - oo
When j > 1, we establish a time-lag backtracking
reconstruction model (referred to as the TLD_ (1 +.J)
model) that uses the information of the following (1

+J) steps to make backtracking steps in advance

Ai,j([l:1+J]M)A/([l:HJ]M)X([JH]M:I)= (D M-1-:1-))>

Xv[(*j) = Ai,,/'(ﬂil‘n/]/lfl)/Y([liH-/lM)O’
)(i(kj) = Ai,/([l:1+J]1\/[)X'([I:I+J]M)(k+l—j)v (k =-2,-3,...).
(5.24)
wherei=1, 2, ..., M,
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Ai,j([I:Hj]M) = (Ai,j(M:l),Ai,j(M+l[2)9 (AR} Ai,j(MJrjfl:j)),

)(i(JH)M—l—/':l—j) = (xi(_/'+1)M—l—_/', XiJ+1)M-2-j)s +++» xi(l—_/)).
If it is written in general matrix form, Eq. (5.24)

becomes:
A, Xpsmpx@enaen = Ko e
Xy = Aaan =X o,

/\/(I:AM)(kf/) = A(I:M)J([l:1+J]MA/([1:1+J]M)(1(+17'),

(k=-2,-3,...).
(5.25)
Avjorn Avjary oo Aijosra
A — | Azjorny Azjoriny 0 Azjor
RBYR e ) : : : ’
Aponny Awjorry " Awjoser i
(5.26)
Xim-1-) Xi@enm2) ... X101
¥ — | Xawrnm1) Xausnmay o X2
AMYDM-1:1) : : :
X D)M-1) X ym-2-) =+ X1
(5.27)

For the time reversal model, it is also possible
to consider introducing the time-lag information to

modelling.

Gonclusion and Discussion

In this paper we introduce the framework of
the modelling theory of the DSDL. Firstly, on the
basis of attractor theory, we construct the linear
and conventional nonlinear prediction models of
the DSDL by introducing the dynamical evolution
mapping relationship between non-delay and delay
attractors of dynamical systems. Meanwhile, the
corresponding predictor-corrector models are
presented. We introduce the concept of key variables
for interpretability of the model, and propose two
ways for how to implement the set of key variables.
Secondly, to take time-lag information into account,
we construct the time-lag mapping between previous
information evolution matrix and univariate delay
matrix, and thus establish the time-lag models and
corresponding predictor-corrector models as well.

Furthermore, we establish the nonlinear extension

relationships between non-delay attractor and
differential attractor. As a result, the differential
attractor mapping models are established, which
contain the conventional differential attractor
mapping models, time-lag differential attractor
mapping models and corresponding predictor-
corrector models. Besides, it is also a very important
issue to infer the past from the present of a
dynamical system. For this, therefore, we construct
the time reversal mapping between the backward
evolution matrix and univariate backward extension
matrix, and in turn, build the time reversal models,
which contain the conventional time reversal models
and time-lag time reversal models.

In fact, there are essential differences among
dynamical, statistical, ML and DSDL models, as
shown in Fig. 2. Both statistical model and ML
model cannot guarantee the consistency between
model attractor and the attractor of the original
dynamical system. Practice (Wang and Li, 2024a,
b; Li et al., 2025; Wu et al., 2025) has proven that
the DSDL, which combines nonlinear dynamics
theory with deep learning technology, effectively
enhances the predictive capability of chaotic
dynamical systems and achieves transparency in
prediction models. Compared with state-of-art ML
or deep learning methods, the DSDL demonstrates
its significant superiority and excellent ability in
purifying polluted information. In addition, the
DSDL solves the “black box” problem and opens
up a new path for constructing more reliable and

transparent prediction models.
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